Homotopy II (2020–2021)

M2 Fundamental Mathematics (S2) • Lectures • 24h

Lecture notes are here.

The goal of this course is to introduce modern homotopy theory, its tools and applications. We will be particularly interested in two examples: chain complexes (see the previous Homology course) and topological spaces. We will present Quillen’s model categories, and we will explain the equivalence between topological spaces and simplicial sets. We will illustrate these methods with rational homotopy theory by showing that multiplicative structures of cochains encodes rational homotopy types of topological spaces.

Prerequisites. It is recommended to have taken the courses Homology (Emmanuel Wagner) and Homotopy I (Bruno Vallette). It will be useful to have a certain familiarity with categorical language and with basic notions of algebraic topology and homological algebra.

Plan of the course. 1. Model categories. 2. Chain complexes. 3. Simplicial sets and topological spaces. 4. Rational homotopy theory.

After this course.

Organization

Lectures will happen on Mondays 10:45–12:45 and Fridays 15:45–17:45. They will begin on January 11th and end on February 19th.

For now, lectures will be online. We will meet via Zoom. You will receive the link to the meeting by email; if you did not receive it, please contact me. The sessions will also be recorded and available on YouTube. To access the different videos, click on the playlist icon in the top right of the embedded player.

The exam will happen on Friday, March 5th, 14:00–17:00, in room 207C of the Halle aux Farines ( note the room change). This will be an open-book exam: you will have access to printed and handwritten lecture notes. Electronic devices will be forbidden.

Lecture 1
Monday January 11th, 10:45–12:45

Analogies between different homotopy theories: topological spaces, simplicial sets, chain complexes. Motivation for the definition of model categories. (Co)fibrations vs. injections/surjections. Definition of model categories. (Sections 1.1 and 1.2)

Blackboard Video
Lecture 2
Friday January 15th, 15:45–17:45

Definition of model categories and first examples (Section 1.3)

Blackboard Video
Lecture 3
Monday January 18th, 10:45–12:45

Definition and construction of the localization of a category with respect to a class of weak equivalence, definition of left homotopies, first properties, dual case of right homotopies (Sections 1.4.1 and 1.4.2).

Blackboard Video
Lecture 4
Friday January 22nd, 15:45–17:45

End of Section 1.4: explicit description of the homotopy category of a model category, Whitehead theorem.

Blackboard Video
Lecture 5
Monday January 25th, 10:45–12:45

Section 1.5.1: The proof of the existence of the projective model structure on the category of bounded-below chain complexes.

Blackboard Video
Lecture 6
Friday January 29th, 15:45–17:45

Existence theorem for cofibration generated model categories (Section 1.5.2), Quillen adjunctions (beginning of Section 1.6).

Blackboard Video
Lecture 7
Monday February 1st, 10:45–12:45

Definition of Quillen equivalences and characterization, homotopy limits and colimits.

Blackboard Video
Lecture 8
Friday February 5th, 15:45–17:45

Reminders on simplicial sets and beginning of the proof of the existence of the Quillen model structure on the category of simplicial sets (Sections 2.1, 2.2, 2.3, and beginning of 2.4).

Blackboard Video
Lecture 9
Monday February 8th, 10:45–12:45

Continuation of the proof of the existence of the Quillen model structure on simplicial sets, anodynes extensions, simplicial homotopy groups.

Blackboard Video
Lecture 10
Friday February 12th, 15:45–17:45

End of the proof of the Quillen equivalence between simplicial sets and topological spaces. Left Bousfield localization and rational homotopy theory.

Blackboard Video
Lecture 11
Monday February 15th, 10:45–12:45

Transferred model structure on CDGAs and Sullivan algebras.

Blackboard Video
Lecture 12
Friday February 19th, 15:45–17:45

Equivalence between CDGAs and rational homotopy types through the PL forms. Applications of Sullivan's theory: models of spaces, dichotomy theorem...

Blackboard Video

Bibliography

Lecture notes are here.

I gave a similar course last year, you can in particular find past exams. Grégory Ginot gave a course in 2017–2018–2019 on the same subject. You can find on his page his lecture notes, as well as past exercise sheets and exams.

Works on homotopy theory:

  • William G. Dwyer et Jan Spaliński. “Homotopy theories and model categories”. In: Handbook of algebraic topology. Amsterdam: North-Holland, 1995, pp. 73–126. DOI:10.1016/B978-044481779-2/50003-1. MR1361887. Zbl:0869.55018. [Introduction to model categories.]
  • Yves Félix, Stephen Halperin et Jean-Claude Thomas. Rational Homotopy Theory. Graduate Texts in Mathematics 205. New York : Springer-Verlag, 2001, p. xxxiv+535. ISBN: 0-387-95068-0. DOI: 10.1007/978-1-4613-0105-9. [Reference book on rational homotopy theory.]
  • Paul G. Goerss et John F. Jardine. Simplicial homotopy theory. Progress in Mathematics 174. Basel: Birkhäuser Verlag, 1999, pp. xvi+510. ISBN: 3-7643-6064-X. DOI:10.1007/978-3-0348-8707-6. MR1711612. Zbl:0949.55001. [Book on simplicial sets and their homotopical properties.]
  • Phillip Griffiths et John Morgan. Rational homotopy theory and differential forms. 2nd ed. Progress in Mathematics 16. New York: Springer, 2013. 224 p. ISBN: 978-1-4614-8467-7. DOI: 10.1007/978-1-4614-8468-4. [Notes on rational homotopy theory]
  • Kathryn Hess. “Rational homotopy theory: a brief introduction”. In: Interactions between homotopy theory and algebra. Contemp. Math. 436. Providence, RI: Amer. Math. Soc., 2007, pp. 175–202. DOI:10.1090/conm/436/08409. arXiv:math/0604626. MR2355774. Zbl:1128.55010. [Introduction to rational homotopy theory]
  • Mark Hovey. Model categories. Mathematical Surveys and Monographs 63. Providence, RI: American Mathematical Society, 1999, pp. xii+209. ISBN: 0-8218-1359-5. MR1650134. Zbl:0909.55001. [Book on model categories.]
  • Jacob Lurie. Higher topos theory. Annals of Mathematics Studies 170. Princeton, NJ: Princeton University Press, 2009, pp. xviii+925. ISBN: 978-0-691-14049-0. MR2522659. Zbl:1175.18001 [Very complete book on \(\infty\)-categories.]

Reminders on algebraic topology and homological algebra:

  • Glen E. Bredon. Topology and geometry. Graduate Texts in Mathematics 139. New York: Springer-Verlag, 1993, pp. xiv+557. ISBN: 0-387-97926-3. DOI:10.1007/978-1-4757-6848-0. MR1224675. Zbl:0791.55001. [(Algebraic) topology and (differential) geometry textbook.]
  • Allen Hatcher. Algebraic topology. Cambridge: Cambridge University Press, 2002, pp. xii+544. ISBN: 0-521-79160-X. MR1867354. Zbl:1044.55001 [Algebraic topology textbook.]
  • Henri Paul de Saint-Gervais. Analysis Situs. [Lecture notes on algebraic topology, in French.]
  • Pierre Schapira. Categories and homological algebra. [Lecture notes on derived categories.]
  • Edwin Spanier. Algebraic topology. Berlin: Springer-Verlag, 1995, pp. xiv+528. ISBN: 978-1-4684-9322-1. DOI:10.1007/978-1-4684-9322-1. MR210112. Zbl:0145.43303. [Algebraic topology textbook.]
  • Charles A. Weibel. An Introduction to homological algebra. Cambridge Studies in Advanced Mathematics 38. Cambridge: Cambridge University Press, 1994, pp. xiv+450. ISBN: 0-521-43500-5. MR1269324. Zbl:0797.18001. [Homological algebra textbook.]