Formality of a higher-codimensional Swiss-Cheese operad

Author(s)
Najib Idrissi.
Publication
In: Algebr. Geom. Topol. 22.1 (2022), pp. 55–111
Online on
Updated on
Accepted on
Full text
/research/codim-swiss-cheese.pdf
DOI:10.2140/agt.2022.22.55
https://doi.org/10.2140/agt.2022.22.55
arXiv:1809.07667
https://arxiv.org/abs/1809.07667
hal-01878406
https://hal.science/hal-01878406
MR4413816
https://mathscinet.ams.org/mathscinet/article?mr=4413816
Zbl 07518301
https://zbMath.org/?q=an:07518301

Abstract

We study bicolored configurations of points in the Euclidean nn-space that are constrained to remain either inside or outside a fixed Euclidean mm-subspace, with nm2n - m \ge 2. We define a higher-codimensional variant of the Swiss-Cheese operad, called the complementarily constrained disks operad CDmn\mathsf{CD}_{mn}, associated to such configurations. The operad CDmn\mathsf{CD}_{mn} is weakly equivalent to the operad of locally constant factorization algebras on the stratified space {RmRn}\{\mathbb{R}^{m} \subset \mathbb{R}^{n}\}. We prove that this operad is formal over ℝ.