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1 Introduction

This manuscript is part of the author’s Habilitation à Diriger des Recherches (HDR). Like in most
HDR memoirs, our goal is to give a synthetic, contextualized presentation of the author’s research
work over the last few years. We hope that the reader will not be disappointed by the lack of new
results in this manuscript.

General context Before delving into the concrete mathematical results, let us first explain the
general context. Roughly speaking, the research presented in this memoir is within the field of
algebraic topology. The objects we will study are topological in nature, such as manifolds (locally
Euclidean spaces) and spaces constructed out of manifolds. We are most interested in properties
of spaces that are invariant under a notion of “deformation” known as homotopy. The tools we
use, on the other hand, are algebraic; they include the well-known notions of groups, rings, or their
representations, as well as notions that would deserve to be better known such as operads and their
representations. Very often, homotopy invariant features of topological spaces are reflected in the
algebraic objects; or sometimes, equivalent to properties of the algebraic objects – the dream of any
algebraic topologist. Algebraic topology lies at the meeting point of many fields of mathematics, some
of which will also appear (perhaps briefly) in this manuscript: homological algebra, category theory,
mathematical physics.

Most of the research presented here stems from a desire to understand configuration spaces, related
topological objects, and especially the algebraic structure of these objects. Configuration spaces are
ubiquitous in algebraic topology. They have a very simple definition: collections (ordered or not)
of pairwise distinct points in a given ambient space. This simple definition hides a complexity that
becomes evident once one starts to try and compute algebraic invariants of these spaces. For example,
the fundamental group of the unordered configuration spaces of n points in the plane is isomorphic to
the nth braid group, the study of which being a deep topic by itself.

As often in algebraic topology, it becomes easier to study configuration spaces if they are viewed
through the lens of a big machinery (a term used positively), instead of studying them one by one. In
this case, the machinery is that of the theory of operads. Indeed, configuration spaces of manifolds are
intimately related to a family of operads called the little disks operads. These operads were initially
introduced in the sixties to study iterated loop spaces; they quickly grew beyond this use case and
have found many uses since then. These operads, and their cousins, act on configuration spaces up to
homotopy. This action is at the heart of many deep results, and we also use it heavily in many of our
proofs.

Studying this machinery quickly leads down several deep rabbit holes. One such hole of particular
interest is Koszul duality. Initially introduced for rings and algebras, Koszul duality has been
generalized with great success to operads about thirty years ago. Nowadays, Koszul duality of operads
serves many purposes; one of them is to produce resolutions (in the sense of homological algebra).
Resolutions are useful to compute homotopy invariant constructions, which circles back to our initial
goal of studying homotopy invariants of spaces reflected by algebras.

Outline The results presented in this memoir can be, roughly speaking, divided into three categories,
which correspond to the three subsequent chapters. Note that many of the results mentioned in the
remainder of this section are part of joint research works with other authors (see Section 1.1 or the
precise references given for each theorem in the next chapters).
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The first chapter is about configuration spaces themselves. We discuss the homotopy invariance
conjecture, and the results we have obtained in this direction in characteristic zero. We moreover
explain how the real homotopy type of configuration spaces of simply connected manifolds is completely
encoded by a finite amount of data, the Lambrechts–Stanley CDGA. We show how this CDGA can
be used to perform concrete, algorithmic computations, such as the search for nontrivial Massey
products.

The second chapter is about operads. After explaining what operads are and why one might take
an interest in their study, we discuss how the results of the previous chapter interact with operadic
structures. We take this opportunity to delve deeper into the proof of one of the main results of the
first chapter. This proof, which uses graph complexes, could be written without mentioning operads
at all; but operads are very much present in the intuition behind them. Finally, we discuss some
results of purely operadic nature regarding the Swiss-Cheese operads and their variants.

The third and last chapter is about resolutions. Computing algebraic invariants of spaces or
manifolds often requires one to find a resolution (e.g., projective or injective) of some object. This is
for example the case of factorization homology, which can be described as a derived tensor product.
We discuss some of the results we obtained in that direct, namely, in the study of curved Koszul
duality for algebras over operads, and in the study of bar, cobar, and W constructions. We finish
with some concrete computations using some of the resolutions and algebraic models of configuration
spaces and other applications.

What is not here In addition to a review of past work, each chapter also includes a few conjectures
or questions for future research. Something missing from this memoir, however, is the author’s current
long-term project. Indeed, it has not yet led to publishable results, and expanding on future research
is not necessarily the goal of an HDR memoir. Let us say a few brief words about it (that should
probably be read after all three chapters to make sense).

Many homotopy invariants of unordered configuration spaces exhibit a remarkable property: they
are eventually constant as the number of points grows compared to the invariant’s dimension [125,
150]. Ordered configuration spaces are more intricate: one must take into account the action of
symmetric groups, and the eventual constancy condition needs an adaptation in terms of group
representations [39]. This property was reinterpreted algebraically [40] and stems from properties of
(strong) polynomial functors [50, 51, 139]. These insights allowed the generalization of “representation
stability” to other algebraic settings involving e.g., braids [155].

Recent works [128, 90] on secondary stability, which involve homotopy invariants of different
dimensions, hints at the fact that operads must play a role in this story. (Operads are explicitly used
in the initial discovery of secondary stability [76].) In particular, operadic right modules (which are
starkly different from operadic left modules) are intimately connected to polynomial functors (see
Def. 3.1.39) and should play a central role in the theory.

The main goals of the research project would be to reinterpret primary and secondary stability
using operadic right modules, obtain “higher” kinds of stability, and establish relations between
the various stabilization maps. This does raise a number of questions, though, such as whether the
Noetherian property [148] of the category of operadic right modules holds. Our hope is that since we
have access to more structure using right modules, we have smaller presentation, and thus, smaller
amount of data to deal with. Thanks to the explicit, combinatorial models of configuration spaces and
their operadic structure obtained, applying concrete techniques from e.g., Koszul duality theory (or
perhaps some generalizations from the world of rewriting methods) appears doable. As an objective,
an efficient computation of factorization homology of non-free algebras could hopefully give rise to
stability results for homology with twisted coefficients (a difficult question, see e.g. recent results
of [126, 127]).
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1.1 Works presented in this document
This list contains the articles presented in this memoir. Some older articles are not included; for a
complete list, see my website, arXiv:idrissi_n_1 or HAL:najib-idrissi.

[1] R. Campos, J. Ducoulombier, and N. Idrissi. “Boardman–Vogt resolutions and bar/cobar constructions
of (co)operadic (co)bimodules”. In: High. Struct. 5.1 (2021), pp. 293–366. doi: 10.21136/HS.2021.09.
arXiv: 1911.09474.

[2] R. Campos, J. Ducoulombier, N. Idrissi, and T. Willwacher. A model for framed configuration spaces of
points. Version 2. 2018. arXiv: 1807.08319. Pre-published.

[3] R. Campos, N. Idrissi, P. Lambrechts, and T. Willwacher. Configuration Spaces of Manifolds with
Boundary. Astérisque 449. Soc. Math. Fr., 2024. isbn: 978-2-85629-990-6. doi: 10.24033/ast.1222.
arXiv: 1802.00716.

[4] R. Campos, N. Idrissi, and T. Willwacher. Configuration Spaces of Surfaces. Version 2. 2019. arXiv:
1911.12281. Pre-published.

[5] N. Idrissi. “The Lambrechts–Stanley Model of Configuration Spaces”. In: Invent. Math. 216.1 (2019),
pp. 1–68. doi: 10.1007/s00222-018-0842-9. arXiv: 1608.08054.

[6] N. Idrissi. “Formality of a higher-codimensional Swiss-Cheese operad”. In: Algebr. Geom. Topol. 22.1
(2022), pp. 55–111. doi: 10.2140/agt.2022.22.55. arXiv: 1809.07667.

[7] N. Idrissi. “Curved Koszul duality of algebras over unital versions of binary operads”. In: J. Pure Appl.
Algebra 227.3 (2023). doi: 10.1016/j.jpaa.2022.107208. arXiv: 1805.01853.

[8] N. Idrissi and E. Rabinovich. “Homotopy Prefactorization Algebras”. In: Res. Math. Sci. 11.45 (2024).
doi: 10.1007/s40687-024-00456-9. arXiv: 2304.13011.

[9] N. Idrissi and R. V. Vieira. “Non-formality of Voronov’s Swiss-Cheese operads”. In: Q. J. Math. 75.1
(2024), pp. 63–95. doi: 10.1093/qmath/haad041. arXiv: 2303.16979.

1.2 Conventions
Unless otherwise specified, we work over the base field Q and (co)homology of spaces is taken with
rational coefficients.

Differential-graded vector spaces (or “dg-modules”) are graded cohomologically, i.e., we write them
as families of the form V = (V i)i∈Z; differentials have degree +1. The homology of a space X is
concentrated in non-positive degrees while the cohomology is in nonnegative degrees. The degree
shift of a graded module is written as (V [k])i := V k+i.

A commutative differential graded algebra (CDGA) is a dg-module equipped with a graded-
commutative associative product. For a dg-module V , the free CDGA on V is denoted S(V ). It is
isomorphic to the tensor product of the polynomial algebra on the even part of V with the exterior
algebra on the odd part of V .

Given objects X, Y (topological spaces, dg-modules, CDGAs. . . ), we write X ∼= Y if they are
isomorphic, and X ≃ Y if they are weakly equivalent, i.e., connected by a zigzag of weak equivalences.
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2 Configuration Spaces

We now introduce the main objects considered in this memoir: configuration spaces of manifolds. We
define them, we explain some of their uses, and we describe the problem of homotopy invariance. We
then describe the various results obtained towards the conjecture of rational homotopy invariance
as well as concrete computations of homotopy types, including a computer computation of Massey
products.

2.1 Definition
Configuration spaces are classical objects of algebraic topology whose study dates back to the 1960s [57,
63]. The simplicity of their definition, which we give next, hides their rich structure and their many
applications in topology and geometry.

Definition 2.1.1. Given a topological space M and an integer r ≥ 0, the rth (ordered) configuration
space of M is defined by:

(2.1.2) ConfM (r) :=
{
(x1, . . . , xr) ∈M r

∣∣ ∀i ̸= j, xi ̸= xj
}
.

In other words, an element of ConfM (r) is an ordered collection of r pairwise distinct points in
M . As the notation indicates, we are most often be interested in the case where M is a manifold,
although the definition makes sense for any topological space.

Figure 2.1: An element of the 4th configuration space of an oriented surface of genus 2.

There exists numerous variations on this definition. A common one is to consider unordered
configuration spaces UConfM (r), which are defined as the quotient of ConfM (r) by the action of
the symmetric group Σr on M r by permutation of indices. Another is to consider the space of
“non-k-equal” configuration space

(2.1.3) Conf<k
M (r) := M r \ {(x1, . . . , xr) ∈M r | ∃1 ≤ i1 < · · · < ik ≤ r, xi1 = · · · = xik

}.

The study of configuration spaces finds its roots in the work of Hurwitz [95] on the topology of
Riemann surfaces (see Magnus [121]) and rose to prominence in the study of braid groups in the work
of Artin [14]. The connection between configuration spaces and braid groups is made explicit by the
following fact:

Theorem 2.1.4 (Artin [14]). The fundamental group of UConfR2(r) is isomorphic to the r-strand
braid group Br.

7
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Figure 2.2: An element of the 4th braid group B4.

This hints at the notion that the computation of homotopy invariants of configuration spaces is a
difficult but worthwhile endeavour.
Remark 2.1.5. There is a morphism of groups π : Br → Σr which records the permutation of the
strands by a braid. For example, the braid of Fig. 2.2 goes to the cycle (132). The fundamental group
of ConfR2(r) is isomorphic to the pure braid group PBr := ker(π).

2.2 Homotopy invariance
The question of homotopy invariance of configuration spaces is a natural one that can be stated
as follows: given two manifolds M and N , if M and N are homotopy equivalent, is it then true
that ConfM (r) and ConfN (r) are homotopy equivalent? A positive answer to that question would
allow one to use standard techniques from algebraic topology to compute homotopy invariants of
configuration spaces, e.g., reduce the manifold to a simpler one. The question is not an obvious one:
a homotopy equivalence f : M ⇆ N : g is rarely injective in both directions, and even if it is, the
homotopy between f ◦ g and g ◦ f and the relevant identity maps are rarely isotopies.

Stated naively, the answer to this question is evidently no. For example, the real line R is homotopy
equivalent to the singleton {0}, but while Conf{0}(r) is empty for r ≥ 2, the space ConfR(r) is never
empty. Up to homotopy, ConfR(r) is discrete with r! connected components; but R is homotopy
equivalent to R2, and ConfR2(r) is the classifying space of the (pure) braid group on r strands.

A first refinement of the question is to restrict our attention to closed manifolds. Since two homotopy
equivalent closed manifolds have the same dimension, the failure observed for {0} ≃ R ≃ R2 ≃ . . . is
avoided. Evidence of a positive answer for this refined question abounds: if two closed manifolds M
and N are homotopy equivalent, then for all r ≥ 0, the spaces ConfM (r) have the same homology
groups, the same homotopy groups, the same loop spaces, and the same stable homotopy types [32,
22, 113, 10]. Variations of the question were also shown to have a positive answer for some classes
of manifolds, such as smooth projective complex varieties [108, 160] (in characteristic zero, i.e., for
rational homotopy types).

Longoni–Salvatore [119], however, proved that even this refined question also has a negative answer.
More precisely, they proved that the configuration spaces of the lens spaces L7,1 and L7,2 (which
are both quotients of S3 under two different actions of Z/7Z and which are homotopy equivalent)
have different homotopy types using the theory of Massey products. This discovery led to further
refinement of the question:

8
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Conjecture 2.2.1. If two simply connected closed manifolds M and N have the same homotopy type,
then so do ConfM (r) and ConfN (r) for all r ≥ 0.

This restrictions eliminates the counterexample of Longoni–Salvatore. There is good reason to
believe that it is true: when manifolds are simply connected, homotopy equivalence is the same as
simple-homotopy equivalence (in the sense of [44]). This could lead to the use of more geometrical
methods. Yet, to this day, this conjecture remains open.

As is often the case in algebraic topology, this conjecture has been also restricted to slices of
the homotopy types involved. In this case, a great deal of research has been performed about the
rational homotopy types of configuration spaces. Rational homotopy, pioneered by Quillen [138] and
Sullivan [157] (and based on earlier insights of Serre [151]), is concerned with the homotopy invariants
of a space that are defined in characteristic zero. More precisely, rational homotopy equivalence
(between simply connected spaces) f : M → N is a continuous map which induces isomorphisms
f∗ : π∗(M)⊗Z Q→ π∗(N)⊗Z Q. Two spaces are rationally equivalent if they can be connected by a
zigzag of rational equivalences. The following conjecture is also still open:

Conjecture 2.2.2 (Félix–Halperin–Thomas [59, §39 Problem 8]). If two simply connected closed
manifolds M and N have the same rational homotopy type, then so do ConfM (r) and ConfN (r) for
all r ≥ 0.

Note that while a positive answer to this conjecture would give a weaker understanding of con-
figuration spaces than their full homotopy types, the starting data is also weaker (as M and N are
merely assumed to be rationally equivalent). This conjecture is thus, overall, neither stronger nor
weaker than the previous one.

A slight refinement of this conjecture consists in considering real homotopy types, rather than
rational homotopy types. While real homotopy types contain slightly less information than their
rational counterparts, they are sufficient for almost every computation (including Betti numbers,
algebra structure on cohomology, ranks of homotopy groups, Whitehead brackets). We settled this
slightly refined conjecture, simultaneously as Campos–Willwacher [34].

Theorem 2.2.3 ([5], Campos–Willwacher [34]). Let M and N be two simply connected, smooth,
closed manifolds. If M and N have the same real homotopy types, then so do ConfM (r) and ConfN (r)
for all r ≥ 0.

Remark 2.2.4. The proof of the above theorem is completely different depending on whether dim(M) ≥
4 or dim(M) ≤ 3. If dim(M) ≤ 3, then there are only a few cases to consider up to diffeomorphism
(thanks to the classification of surfaces and the Poincaré conjecture): the singleton {0}, the sphere
S2, and the sphere S3. Homotopy invariance then obviously holds.

The question of homotopy invariance can also be asked about compact manifolds with boundary.
To avoid aberrations such as [0, 1] ≃ {0}, the question must be phrased as follows: given compact
manifolds with boundary M and N , if the pair (M, ∂M) is weakly homotopy equivalent to the pair
(N, ∂N), is it then true that ConfM (r) ≃ ConfN (r) for all r ≥ 0 ? We gave a partial answer with
Campos, Lambrechts, and Willwacher :

Theorem 2.2.5 ([3]). If M is a simply connected compact manifold of dimension ≥ 4, then the real
homotopy type of ConfM (r) only depends on the real homotopy type of the map ∂M →M .

Remark 2.2.6. These results have since then been improved by Willwacher [172] to deal with rational
homotopy types rather than real homotopy types, with the restriction that manifolds need to be
framed.

9
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2.3 Real homotopy theory
Homotopy invariance, as presented above, is good enough to tell us that if we want to know about
the configuration spaces of a given manifold M , we can apply algebro-topological techniques to
simplify the manifold M up to homotopy, and then compute the configuration spaces of the simplified
manifold. However, by itself, it does not give us any way to answer specific questions about ConfM (r),
such as “what is the rank of the fourth cohomology group,” or “what is the cup length of the ring
H∗(ConfM (r)).” To answer this kind of question, we need much more concrete information.

As we mentioned above, we are mainly concerned with rational homotopy types of manifolds.
According to the theory of Sullivan [157], the rational homotopy type of a given (simply connected)
space X is fully encoded by a certain quasi-isomorphism class of commutative differential-graded
algebras (CDGAs), called “(rational) models.” The notion of model uses the CDGA of piecewise
polynomial forms (PL forms) Ω∗

PL( ), which is defined (over Q) using a mix of singular cohomology
and differential forms on standard simplices. We refer to [59, 61, 60] for references on the matter.

Definition 2.3.1. A model of X is a CDGA A = (A, d) which is quasi-isomorphic to Ω∗
PL(X), i.e.,

there exists a zigzag of quasi-isomorphisms of CDGAs over Q:

(2.3.2) A
∼←− . . .

∼−→ Ω∗
PL(X).

Two spaces have the same rational homotopy type if and only if they have quasi-isomorphic models.
Indeed, a continuous map f : X → Y between topological spaces induces a morphism of CDGAs
f∗ : Ω∗

PL(Y )→ Ω∗
PL(X). If f is a rational homotopy equivalence, then f∗ is a quasi-isomorphism. The

power of rational homotopy theory comes from the converse: any quasi-isomorphism between Ω∗
PL(X)

and Ω∗
PL(Y ) comes from a homotopy class of rational homotopy equivalences between X and Y . This

leads to the following theorem:

Theorem 2.3.3 (Sullivan [157]). Let X, Y be two simply connected spaces with finite dimensional
cohomology in each degree. The CDGAs Ω∗

PL(X) and Ω∗
PL(Y ) are quasi-isomorphic if and only if X

and Y have the same rational homotopy type.

Remark 2.3.4. Using models, we can also state more clearly the difference between real and rational
homotopy types. Two spaces X, Y are said to have the same real homotopy type if Ω∗

PL(X)⊗Q R and
Ω∗

PL(Y )⊗Q R can be connected through a zigzag of CDGAs with real coefficients. Note that unlike in
the rational case, such a zigzag does not necessarily come from a homotopy class of continuous maps.
Remark 2.3.5. For a smooth manifold M , we have that Ω∗

PL(M)⊗Q R is quasi-isomorphic to Ω∗
dR(M),

the CDGA of de Rham forms on X.
Remark 2.3.6. In the proofs of results in the sequel, we actually need to use piecewise semi-algebraic
(PA) forms Ω∗

PA. These forms, initially introduced by Kontsevich–Soibelman [107] and developed by
Hardt–Lambrechts–Turchin–Volić [89], are defined for semi-algebraic sets, and give real models for
compact such sets. While the definition of Ω∗

PA is immensely more involved than that of Ω∗
PL, the

two functors share many properties. Moreover, if X is a compact semi-algebraic set, then Ω∗
PA(X) is

quasi-isomorphic to Ω∗
PL(X)⊗Q R. PA forms have the advantage that they enable the computation

of integrals along fibers of semi-algebraic bundles of some classes of forms, an operation that satisfies
a version of Stokes’ formula.

If A is a model of X, then the cohomology of A is isomorphic to the rational cohomology of X as a
graded ring, i.e., H∗(A) ∼= H∗(X). However, A contains much more information. For example, the
rational duals of the homotopy groups of X can be recovered as the Harrison homology:

(2.3.7) Hom(πk(X),Q) ∼= HHar
k−1(A).

One can also compute other pieces of information about X using A, such as the Massey products or
the Whitehead brackets.

10
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2.4 Models of configuration spaces
Let us now turn back to configuration spaces. Since all manifolds based on the building block Rn, it
is natural to first focus on M = Rn. The cohomology of ConfRn(r) is well-known, and is given by the
following theorem:

Theorem 2.4.1 (Arnold [11]). Let n ≥ 2 and r ≥ 1 be integers. The cohomology of ConfRn(r) is
given by the following graded commutative ring, where the generators ωij are of degree n− 1:

(2.4.2) H∗(ConfRn(r)) = S(ωij ; 1 ≤ i, j ≤ r)
(ωji − (−1)nωij , ωii, ω2

ij , ωijωjk + ωjkωki + ωkiωij) .

Remark 2.4.3. This computation actually holds over Z, and the result is a free abelian group, so by
the universal coefficients theorem, it holds over any ring.

The relations in the above theorem are called the Arnold relations. The proof of this theorem
hinges on the existence of the Fadell–Neuwirth [57] fibration, which allows one to work by induction
on r (and which happens to admit a section for M = Rn):

(2.4.4) M \ {∗} → ConfM (r)→ ConfM (r − 1).

The cohomology of ConfRn(r) is a free CDGA on the generators ωij , modulo some relations. It is
instructive to understand the elements of the cohomology ring in terms of graphs. Let us consider
directed graphs with vertices {1, . . . , r} endowed with a total order on the set of its edge, as well as
formal linear combinations of such graphs. The degree of a graph is the number of edges multiplied
by (n− 1). To such a graph, we can naturally associate a monomial in the generators ωij , by taking
the product of the ωij corresponding to the edges of the graph, in the order given by the total order
on the edges. For example, ω13ω32 is the image of the graph with two edges, one from 1 to 3 and one
from 3 to 2. The relations in the cohomology ring of ConfRn(r) can be interpreted as follows:

• The relation ωji = (−1)nωij corresponds to the fact that reversing the direction of an edge
changes the sign of the corresponding monomial.

• The relation ωii = 0 corresponds to the fact that a graph cannot have a loop.
• The relation ω2

ij = 0 corresponds to the fact that a graph cannot have two edges between the
same two vertices.

• The relation ωijωjk + ωjkωki + ωkiωij = 0, which is the most interesting one, corresponds to a
certain local relation between graphs. If three graphs Γ1, Γ2, Γ3 are identical except for the edges
between the vertices i, j, k, such that Γ1 contains the edge {i→ j, j → k}, Γ2 contains the edge
{j → k, k → i}, and Γ3 contains the edge {k → i, i→ j}, then the monomials corresponding to
these graphs sum to zero.

The vector space spanned by graphs modded out by this relation is isomorphic to H∗(ConfRn(r)).
The product of the algebra can also be described in terms of graphs: the product of two graphs is
obtained by taking the disjoint union of edges (gluing vertices together).
Example 2.4.5. Let us consider n odd and r = 3. The classes of the following graphs form a basis of
H∗(ConfRn(3)):

(2.4.6)
1

2 3
,

1

2 3
,

1

2 3
,

1

2 3
,

1

2 3
,

1

2 3
.

These graphs correspond respectively to the elements 1, ω12, ω23, ω31, ω12ω23, and ω23ω31. Note that
since n is assumed odd, the degree of ωij is even, so the order of the edges do not matter. However,
the symmetry relation reads ωji = −ωij , so that we need to orient edges. If we had assumed n even

11
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instead, then the degree of ωij would be odd, and the order of the edges would matter; but the
symmetry relation would read ωji = ωij , so that we would not need to orient edges.

Under the Arnold relations, every graph can be reduced to a linear combination of the above graphs.
For example, the graph corresponding to ω31ω12 is equal to −ω12ω23 − ω23ω31. Any graph with more
than two edges vanishes because of the Arnold relation.

The above theorem allows us to fully understand the cohomology of ConfRn(r). However, in
principle, it is not enough to understand the full rational homotopy type of ConfRn(r). It turns out
that the configuration spaces of Rn satisfy a strong property, called formality, which precisely means
that the rational homotopy type of ConfRn(r) is determined by its cohomology ring.

Definition 2.4.7. A space X is called formal if (H∗(x), d = 0) is quasi-isomorphic to Ω∗
PL(X).

Remark 2.4.8. Formality over Q is equivalent to formality over any field of characteristic zero.

Theorem 2.4.9 (Arnold [11] for n = 2, Kontsevich [105] for all n). The configuration spaces ConfRn(r)
are Q-formal for all n ≥ 1 and r ≥ 0.

Arnold’s proof for n = 2 is relatively direct. We can view R2 as the space of complex numbers C.
This allows us to find explicit representatives of the classes ωij ∈ H1(ConfC(r);C) (for i ≠ j) which
satisfy “on the nose” the relations of the cohomology ring:

(2.4.10) H∗(ConfC(r);C)→ Ω∗
dR(ConfC(r);C), ωij 7→ d log(zj − zi) = dzj − dzi

zj − zi
.

However, for n ≥ 3, the situation is much more complicated. It is unknown (and unlikely) that
there exist forms in Ω1

dR(ConfRn(r)) (or Ω1
PL(ConfRn(r))) which represent the classes ωij and satisfy

the Arnold relations. It is thus necessary to find an intermediate CDGA between H∗(ConfRn(r)) and
Ω∗

dR(ConfRn(r)) in which the Arnold relations are relaxed up to homotopy; that is, a resolution (in
the sense of homological algebra) of H∗(ConfRn(r)). One such type of resolutions, based on graph
complexes, was introduced by Kontsevich [105]. Another one for n = 2, based on infinitesimal braids,
was introduced by Tamarkin [158] based on earlier work on Kohno [103] and Drinfeld [55].

In both cases, the structure of configuration spaces plays an essential role in the construction of the
resolution. It is not sufficient to merely consider each configuration space of Rn separately. Indeed,
one needs to consider the whole family of configuration spaces ConfRn(r) at once, as well as the maps
between them. The structure maps, and the relations between them, are neatly encoded by the notion
of operad, which we present in Sec. 3.

* * *
Models According to Th. 2.2.3, for closed manifolds M satisfying appropriate hypotheses, the real
homotopy type of ConfM (r) only depends on the real homotopy type of M . However, by itself, this
invariance result does not tell us much about ConfM (r). To truly understand ConfM (r), we need
more.

The first step is to find a model of M , that is, a CDGA A which is quasi-isomorphic to Ω∗
PL(M).

All our models and methods of computation for ConfM (r) rely heavily on the fact that M is a
manifold. Indeed, while the study of configuration spaces of non-manifolds (e.g., graphs, see Fig. 2.3)
is fascinating, it goes beyond the scope of this memoir.

One of the most fundamental features of manifolds is Poincaré duality. Under Poincaré duality, the
cohomology of a closed oriented manifold M is isomorphic to the dual of the homology of M . This
feature is reflected on certain models of M .

Definition 2.4.11. A Poincaré duality model of an oriented closed n-manifold M is a CDGA A
which is quasi-isomorphic to Ω∗

PL(M) and which is equipped with a linear map ε : An → R (called the
orientation), satisfying the following properties:

12
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⇝ ⇝ ⇝

Figure 2.3: The configuration space of two points in a tripod is connected.

• The orientation vanishes on cocycles, that is, ε(dx) = 0 for all x ∈ An.
• The orientation induces a non-degenerate pairing Ak ⊗An−k → R, a⊗ b 7→ ε(ab) for all k ∈ Z.

Lambrechts–Stanley [111] proved that such models always exist for all simply connected closed
manifolds. Hájek [88] proved that such models also exist for connected closed manifolds, with an
additional technical condition if dim(M) is even.

Let A be a Poincaré duality model of M . For 1 ≤ i ≤ r, we let ιi : A → A⊗r be the inclusion
of the ith factor, that is, a 7→ 1⊗(i−1) ⊗ a ⊗ 1⊗(r−i). Moreover, we let ∆A be the diagonal class,
that is, the dual of the fundamental class of the diagonal ∆ ⊆ M×2. More precisely, if (xα)α is a
graded basis of A and (x∗

α)α is its dual basis under the bilinear form induced by the orientation,
then ∆A = ∑

α(−1)|xα|xα ⊗ x∗
α. Note that (a ⊗ 1)∆A = (1 ⊗ a)∆A for all a ∈ A. Finally, we let

∆ij = (ιi · ιj)(∆A) be the dual of the fundamental class of the diagonal {xi = xj} ⊆M r.
Example 2.4.12. Let M = Sn be a sphere. Any sphere is formal, so we can take A = H∗(M) =
Λ(x) = Q⟨1, x⟩ as our Poincaré duality model of M , where deg x = n. The diagonal class of A is
∆A = 1⊗ x + (−1)nx⊗ 1. Note that due to the Koszul rule of signs, we indeed have:

(x⊗ 1)∆A = (x⊗ 1)(1⊗ x + (−1)nx⊗ 1) = x⊗ x,(2.4.13)
(1⊗ x)∆A = (1⊗ x)(1⊗ x + (−1)n(x⊗ 1)) = x⊗ x.(2.4.14)

Taking a Poincaré duality model as initial data, Lambrechts–Stanley [110] constructed a CDGA GA(r)
whose cohomology is isomorphic to H∗(ConfM (r)) as a Σr-module, and they conjectured that GA(r)
is a model of ConfM (r). This CDGA has a long history; variations of it appeared in the works of Co-
hen–Taylor [43], Bendersky–Gitler [22], Kriz [108], Félix–Thomas [62], and Berceanu–Markl–Papadima
[23].

Definition 2.4.15. The CDGA GA(r) is defined by:

(2.4.16) GA(r) :=
(

A⊗r ⊗H∗(ConfRn(r))/
(
ιi(a)ωij = ιj(a)ωij

)
a∈A,1≤i̸=j≤r

, dωij = ∆ij

)
.

Roughly speaking, the idea behind the CDGA GA(r) is that since we have:

(2.4.17) ConfM (r) = M r \
⋃

1≤i̸=j≤r

∆ij ,

a model for ConfM (r) “should” be obtained by starting from a model of M r and adding generators
to kill the fundamental classes of the diagonals. The CDGA GA(r) is a candidate for such a model. It
was known to be an actual CDGA model in a few cases: for smooth projective complex varieties [108];
for 2-connected manifolds and r = 2 [109]; for even-dimensional simply connected manifolds and
r = 2 [45]. Moreover, Lambrechts–Stanley [110] proved that GA(r) computes the cohomology of
ConfM (r) as a Σr-module for simply connected closed manifolds.

We have obtained the following result, proved independently by Campos–Willwacher [34]:
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Theorem 2.4.18 ([5, 34]). Let M be a simply connected smooth closed manifold. Then for any
Poincaré duality model A of M and any r ≥ 0, the CDGA GA(r) is a model of ConfM (r) over R.

Since then, this statement has been shown to hold over Q by Willwacher [172] for framed manifolds
of dimension at least 4. The assumption that M is framed comes from the way that Willwacher’s result,
like Th. 2.4.18, is obtained. Indeed, just like Kontsevich’s proof [105] of formality of configuration
spaces of Rn relies on the structure of configuration spaces, the proof of Th. 2.4.18 relies on the
operadic structure of configuration spaces of M , which requires M to be framed. For Th. 2.4.18, the
framed assumption does not appear because the key constructions, that of the propagator and the
graph complexes, can still be defined even when M is not framed.
Example 2.4.19. Let r = 2 and A be a Poincaré duality CDGA. Then as a graded vector space, GA(2)
is isomorphic to:

(2.4.20) GA(2) ∼= (A⊗A⊗ 1)⊕ (A⊗ ω12).

The multiplication is given by:

(2.4.21) (a⊗ a′ ⊗ 1 + a′′ ⊗ ω12)(b⊗ b′ ⊗ 1 + b′′ ⊗ ω12) = ±ab⊗ a′b′ ⊗ 1 + (aa′b′′ ± bb′a′′)ω12.

The differential is given by:

(2.4.22) d(a⊗ a′ ⊗ 1) = d(a⊗ a′)⊗ 1, d(a⊗ ω12) = d(a)⊗ ω12 ± (a⊗ 1)∆A ⊗ 1.

This CDGA is thus isomorphic to the cone of the map A→ A⊗A, a 7→ (a⊗ 1)∆A. Since that map
is injective, the cone is quasi-isomorphic to the quotient, that is,

(2.4.23) GA(2) ≃ A⊗2/(∆A).

This echoes the classical result that H∗(ConfM (2)) = H∗(M2 \∆M ) ∼= H∗(M2)/(∆M ).
The computation of GA(r) becomes significantly harder when r ≥ 3. Let us give an example for

r = 3, which is the smallest difficult case. Let us denote by GA(r)(w) the subspace of GA(r) spanned by
the elements of the form [α⊗ ω] where α ∈ A⊗r and ω ∈ H∗(ConfRn(r)) is a product of w generators.
Example 2.4.24. Suppose that M = Sn is a sphere. Any sphere is formal, so we can take A =
H∗(Sn) = Λ(x) as above. Let us denote by xi = ιi(x) the image of the generator x under the inclusion
of A as the ith factor of A⊗3. Then GA(3) = GA(3)(0)⊕GA(3)(1)⊕GA(3)(2) is a direct sum of subspaces
consisting of terms of three types:

• Terms in GA(3)(0) = A⊗3. These form a subspace of dimension 23 = 8. They are all cycles, and
correspond to the image of the dual of the inclusion ConfM (3) ↪→M3.

• Terms of the form ιi(a)ιk(b)ωij ∈ GA(3)(1), where {i, j, k} = {1, 2, 3}. Note that ωji = −ωij , so
there are

(3
1
)
× 22 = 12 terms of this form. The differential is given on elements of the form

ι1(a)ι3(b)ω12 by:

(2.4.25)
d(ω12) = x2 + (−1)nx1, d(x1ω12) = (−1)nx1x2,

d(x3ω12) = x2x3 + (−1)nx1x3, d(x1x3ω12) = (−1)nx1x2x3.

The differential is defined similarly on the other terms.
• Terms of the form ιi(a)ωijωjk ∈ GA(3)(2), where {i, j, k} = {1, 2, 3}. Because of the (anti)-

symmetry of ωij , the two-term relation, and the three-term relation, there are 2× 2 = 4 such
terms. The differential is given by:

d(ωijωjk) = xjωjk + (−1)nxiωjk − (−1)nxkωij − xiωij ,(2.4.26)
d(xiωijωjk) = xixjωjk + (−1)nxixkωij .(2.4.27)
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We thus see interesting phenomena occur in H∗(GA(3)) depending on the parity of n.
• If n is odd, then the image of the differential d : GA(3)(1) → GA(3)(0) is generated by relations

of the form ιi(x) = ιj(x) for all i, j, so that in cohomology, the class of [ι1(x)] remains nonzero.
In fact, if A is the cohomology of an odd sphere, then GA(r) is quasi-isomorphic to A ⊗
H∗(ConfRn(r − 1)) for odd n, using the map defined on generators by:

(2.4.28) A⊗H∗(ConfRn(r − 1))→ GA(r), a⊗ 1 7→ ιr(a), 1⊗ ωij 7→ ωij .

This is consistent with the fact that for odd n, the Fadell–Neuwirth fibration ConfSn(r) →
Sn, x 7→ x1, whose fiber is ConfRn(r − 1), splits rationally for all r. For n ∈ {0, 1, 3, 7} this
follows from the fact that Sn is an H-space. For other odd values of n, one observes that the
splitting map remains well-defined rationally.

• If n is even, then the image of the above differential is generated by relations of the form
ιi(x) = −ιj(x) for all i, j. But then, we have that [ι1(x)] = −[ι2(x)] = [ι3(x)] = −[ι1(x)], so
that [ι1(x)] = 0. It follows that only the unit 1 ∈ GA(3)(0) survives in cohomology. The only
other surviving class is [x3ω12 − x2ω23 − x1ω13] in degree 2n − 1. It follows that ConfSn(3)
is a rational (2n− 1)-sphere. The Fadell–Neuwirth fibration ConfSn(3)→ Sn, whose fiber is
ConfRn(2) ≃ Sn−1 is a rational version of the Hopf fibration.

* * *
Framed case The homotopy type of the configuration spaces of a manifold provide important
information about the structure of that manifold. However, this information is sometimes insufficient
for some applications.

One instance of this phenomenon appears in the computation of embedding spaces through the
theory of embedding calculus (without the claim of being exhaustive, let us mention [85, 84, 30,
161, 83, 31, 13, 12]). The goal of embedding calculus is to compute the homotopy type of the space
Emb(M, N) of embeddings f : M ↪→ N for some manifolds M, N (possibly with some restrictions, e.g.,
compact support). To perform this computation, the rough idea of embedding calculus is to replace
the functor Emb( , N) by polynomial approximations, in the sense that a functor is polynomial of
degree d if (roughly speaking) its value on a space X can be recovered from its value on a covering of
X by d open balls and their intersections. Under good conditions (e.g., when dim N − dim M ≥ 3),
the limit of this procedure as d→∞ recovers the homotopy type of Emb(M, N).

Modern definitions of polynomial approximations use maps between configuration spaces [31, 161]
and their operadic structures (Sec. 3). However, if one only has access to plain configuration spaces,
then the machinery of embedding calculus can only be applied to framed manifolds and framed
embeddings. If one wants to deal with general manifolds and arbitrary embeddings, it is necessary to
use framed configuration spaces instead.

Definition 2.4.29. Let M be a smooth manifold and FrM →M be the oriented frame bundle of M .
The rth framed configuration space of M is the pullback:

(2.4.30)
Conf fr

M (r) Fr×r
M

ConfM (r) M×r.

⌟

That is, a point of Conf fr
M (r) is a configuration of r points in M , each endowed with a basis of its

tangent space.
Unfortunately, the local structure of framed configuration spaces is much harder to understand

than for plain configuration spaces. As a simple example of the added complexity compared to the
unframed case, note that the action of SO(n) on Sn−1 is not formal for odd n ≥ 3 [98, Rem. 9.5],
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which means that the study of just two points in Rn colliding at a single position requires careful
consideration. More generally, the local structure of framed configuration spaces is encoded by the
framed little disks operads (Def. 3.2.25). The homotopy type of these operads are more complex
than that of plain little disks operads (Th. 3.3.9). Nevertheless, with Campos, Ducoulombier, and
Willwacher, we were able to prove the following in the preprint [2]:

Theorem 2.4.31 ([2]). There is a model over R of Conf fr
M (r) based on graph complexes, which

depends on a Maurer–Cartan element defined through integrals in the framed graph complex.

The Maurer–Cartan elements mentioned in the previous theorem are difficult to compute. Their
definition involve integrals given by “Feynman rules,” and no general method exists to find their
values. We will see that in the case of a surface M = Sg, using some completely different methods,
the Maurer–Cartan element can be shown to vanish up to homotopy to yield a much simpler model
of Conf fr

Sg
(r).

* * *
Surfaces While closed surfaces are closed manifolds, Th. 2.4.31 does not apply to most of them, as
only the 2-sphere is simply connected. Th. 2.4.52 does apply to surfaces, but the result is not explicit:
it depends on the calculation of certain integrals that are hard to perform in general. These integrals
have been computed by Campos–Willwacher [34], but only for the 2-sphere. Since these integrals
remain a mystery, it is a priori not obvious that the graph complex obtained in Th. 2.4.52 is related
to some kind of “small” model (of the form of GA from Th. 2.4.18).

However, surfaces are notoriously well-behaved manifolds. In particular, oriented closed surfaces
are smooth projective complex manifolds (complex curves). The results of Kriz [108] and Totaro [160]
thus apply: for such a surface S, the CDGA GH∗(S)(r) is a rational model of ConfM (r) for any r ≥ 0.

With Campos and Willwacher, in [4], we studied the framed configuration spaces of closed oriented
surfaces. Given the genus g surface Sg, let us denote the generators of its cohomology as follows,
where deg ai = deg bi = 1 for all i:

(2.4.32) Ag := H∗(Sg) = S(a1, . . . , ag, b1, . . . , bg)/(aibi − ajbj , aiaj , aibj , bibj)1≤i̸=j≤g.

We also let ν ∈ H2(Sg) be the volume form, that is, ν = [a1b1]. The diagonal class ∆Ag is equal to
1⊗ ν + ν ⊗ 1−∑i(ai ⊗ bi − bi ⊗ ai). Note that if we apply the product of the algebra Ag ⊗Ag → Ag

to ∆Ag , we recover (2 − 2g)ν = χ(Sg)ν, as expected. Then the frame bundle FrSg has a rational
model given as follows, where deg θ = 1:

(2.4.33) Afr
g :=

(
Ag ⊗ S(θ), dθ = (2− 2g)ν

)
.

Theorem 2.4.34 (Bezrukavnikov [26]). A rational model for the framed configuration space Conf fr
Sg

(r)
is given by the following CDGA:

(2.4.35) Gfr
Afr

g
(r) :=

(
GAg (r)⊗ S(θ1, . . . , θr)/(θiωij = θjωij)1≤i̸=j≤r, dθi = (2− 2g)νi

)
.

In [4], we prove that this model is compatible with the action of the framed little disks operad. We
go back to operads in Sec. 3, so we postpone our discussion of this result there. Simply note for now
that our methods are completely different than the ones we used for Th. 2.4.18 or Th. 2.4.52. We use
that any surface can be decomposed into two kinds of surfaces: a sphere with holes, and cylinders
(attached to the holes). Gluing back simple models for configuration spaces of these two kinds of
manifold, we recover the model for the configuration spaces of the whole surface, while preserving the
operadic structure.

The above models for ConfSg (r) and Conf fr
Sg

(r) are quite nice: they are quadratic Koszul [26] (with
inhomogeneous differential for framed configuration spaces). We refer to Sec. 4 for a discussion of
Koszul duality. These models thus lend themselves to concrete computations.
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Example 2.4.36. By computing the C∞-structure on cohomology using the homotopy transfer theorem,
we can explicitly prove that ConfSg (r) admits nontrivial Massey products when g ≥ 1 and r ≥ 3. In
particular, this implies that ConfSg (r) is not formal, recovering [26, Corollary 1].

To exhibit the fact that the models are well-suited to computations, we implemented in Mathematica
the computation of the transferred C∞-structure – see Appendix 5. We find that for a suitable choice
of deformation retract of B := GA1(3) onto its cohomology, if we let aj

i = ιi(aj) and bj
i = ιi(bj), then

we get a nonzero ternary product:

u = 2α1
1 − 8α1

2 + 6α1
3 + 8

3β1
1 + 8β1

3 −
32
3 β1

2 ∈ H1(B);

v = 8
3α1

1 + 8α1
3 −

32
3 α1

2 + 4
3β1

2 − β1
3 −

1
3β1

1 ∈ H1(B);

w = 3
2α1

1 − 6α1
2 + 9

2α1
3 − β1

1 + 4β1
2 − 3β1

3

m2(u, v) = 0 ∈ H2(B); m2(v, w) = 0 ∈ H2(B);
m3(u, v, w) = 192α1

1ω1,2 + 192α1
1ω1,3 − 192α1

1ω2,3 − 192α1
2ω1,3

+ 192α1
2ω2,3 − 192α1

3ω1,2 − 24β1
1ω1,2 − 24β1

1ω1,3

+ 24β1
1ω2,3 + 24β1

2ω1,3 − 24β1
2ω2,3 + 24β1

3ω1,2 ̸= 0 ∈ H2(B)/
(
u, w

)
.

Remark 2.4.37. Strictly speaking, in Ex. 2.4.36, we are computing the transferred A∞-structure,
not the C∞-structure. Thanks to a theorem of Saleh [142], formality as an associative dg-algebra is
equivalent to formality as a CDGA in characteristic zero. In fact, two CDGAs are quasi-isomorphic if
and only if they are so as DGAs [33].

Question 2.4.38. Can the cohomology of GA(r) be described more generally (e.g., can a basis be
found)? Can the transferred C∞-algebra structure be computed in general?

* * *
Manifolds with boundary Computing the homotopy type of configuration spaces of manifolds with
boundary is, for some aspects, more arduous than those of closed manifolds. In general, the homotopy
type of ConfM (r) (for a manifold M with boundary) cannot possibly depend on just the homotopy
type of M , even in simple cases. For example (see [101, Sec. 1.1]), the torus with a point removed
S1,1 and the sphere with three points removed S0,3 are both homotopy equivalent to the wedge sum
S1 ∨ S1, but their configuration spaces ConfS1,1(r) and ConfS0,3(r) are not homotopy equivalent for
r ≥ 2. It is, instead more reasonable to hope that ConfM (r) can be determined from the homotopy
type of the pair (M, ∂M), or from the proper homotopy type of M (in the sense of [134]).

However, configuration spaces of manifolds with boundary admit much more structure than those
of closed manifolds. In addition to applying operadic operations (Sec. 3), which are common to both
kinds of manifolds, it is also possible to glue configuration spaces of manifolds with boundary. More
precisely, if a manifold X is equal to M ∪N M ′, where ∂M = ∂M̄ ′ = N , then one can define:

• on the symmetric sequence ConfN×R = {ConfN×R(r)}r≥0, the structure of a monoid up to
homotopy, by gluing cylinders end-to-end;

• on the symmetric sequence ConfM (resp., ConfM ′), the structure of a right (resp., left) module
up to homotopy over ConfN×R;

• a natural equivalence from the “homotopy tensor product” ConfM ×ConfN×R ConfM ′ to ConfX .
This structure is pervasive in the literature. One common avatar is the operation “adding a point

at infinity” ConfM (r)→ ConfM (r + 1), which appears e.g., in the study of homological stability [125,
150]. This operation is simply given by choosing a base point ∞ ∈ ConfN×R(1) and plugging it into
the operation ConfM (r)× ConfN×R(1)→ ConfM (r + 1). The monoid/module structure also plays
an important role in the axioms characterizing factorization homology [18], which are themselves
inspired by the definition of topological quantum field theories [15].
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There are few computations regarding the homotopy types of configuration spaces of manifolds
with boundary. A notable approach is the one of Petersen [132], who provided a method to compute
the cohomology with compact support of ConfM (r) using a twisted CDGA model for M .

In [3], with Campos, Lambrechts, and Willwacher, we extended the results of [34, 5] to provide
models for configuration spaces of manifolds with boundary. The general idea is similar to the one for
closed manifolds. To even define the analogue of the small model GA for manifolds with boundary, we
needed new tools.

In particular, we generalized the notion of Poincaré duality models to manifolds with boundary,
and defined the notion of “Poincaré–Lefschetz duality (PLD) models.”

Definition 2.4.39. A PLD model of a pair (M, ∂M), where M is a manifold with boundary of
dimension n, is a morphism of CDGAs λ : B → B∂ which is quasi-isomorphic to the restriction map
Ω∗(M)→ Ω∗(∂M) such that:

• The CDGA B∂ is equipped with an augmentation ε∂ : Bn−1
∂ → R that makes it into a Poincaré

duality model of ∂M ;
• The morphism λ is surjective;
• There is an augmentation ε : Bn → R satisfying Stokes’ formula (ε(dx) = ε∂(λ(x)));
• The augmentation ε induces a perfect pairing of degree n between the kernel of λ (which models

relative forms Ω∗(M, ∂M)) and the quotient P of B by the dg-ideal {x | ∀y ∈ ker(λ), ε(xy) = 0}.

Example 2.4.40. A PLD model for (Dn, Sn−1) is given by:

B∂ = (⟨1, vn−1⟩, dvn−1 = 0), ε∂(vn−1) = 1;(2.4.41)
B = (⟨1, vn−1, wn⟩, dvn−1 = wn), ε(wn) = 1.(2.4.42)

and λ is the obvious quotient map. The kernel of λ is spanned by w while the quotient P mentioned
above is spanned by 1.
Example 2.4.43. More generally, let M ′ be a simply connected closed n-manifold and let A be a
Poincaré duality model of M ′. Let M be the manifold with boundary obtained from M ′ by removing
an open disk. Then a PLD model of (M, Sn−1) is given by:

B∂ = (⟨1, vn−1⟩, dv = 0), ε∂(v) = 1;(2.4.44)
B =

(
A⊕ ⟨vn−1⟩, dv = volA

)
, ε(volA) = 1.(2.4.45)

By adapting the arguments of Lambrechts–Stanley [111] to the case of manifolds with boundary
and combining them with results of Cordova Bulens–Lambrechts–Stanley [46], the following result
was obtained:

Theorem 2.4.46 ([3]). Any simply connected manifolds with simply connected boundary of dimension
≥ 7 admits a PLD model.

Remark 2.4.47. In [3], it is also proved that any manifold admitting a surjective pretty model
(see [47] for the definition) also admits a PLD model. According to the results of Cordova Bu-
lens–Lambrechts–Stanley [47], examples of manifolds admitting surjective pretty models include
even-dimensional disk bundles over simply connected manifolds, manifolds (M, ∂M) such that ∂M
retracts rationally onto its half-skeleton, and complements of high-codimensional 2-connected sub-
polyhedra in simply connected closed manifolds.

Question 2.4.48. Can the assumptions that dim M ≥ 7 and/or the that M is simply connected be
dropped from Th. 2.4.46? (It would be interesting to investigate if methods from Hodge theory, as
in [88], could allow one to answer this question.)
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We then used PLD models to define a “small” Lambrechts–Stanley-type CDGA. This CDGA is
defined almost exactly as GA above. Let (λ : B → B∂ , ε, ε∂) be a PLD model of some manifold with
boundary M , and let K (resp., P ) be the kernel (resp., quotient) from Def. 2.4.39.

(2.4.49) GP (r) :=
(
P ⊗r ⊗H∗(ConfRn(r))/(ιi(a)ωij = ιj(a)ωij)a∈A,1≤i̸=j≤r, dωij = (∆P )ij

)
,

where ∆P is the image of the element ∆KP ∈ K ⊗ P that witnesses the perfect pairing between K
and P , under the composite map K ⊗ P ↪→ B ⊗ P ↠ P ⊗ P . Using techniques similar to the ones
of Lambrechts–Stanley [110], we prove that the homology GP (r) is isomorphic to the homology of
ConfM (r) as a Σr-module.

However, it can be seen heuristically that the homotopy type of GP is incorrect [3, Ex. 8.11].
Instead, we introduce a deformation G̃P (r) which is isomorphic to GP (r) as a dg-Σr-space, but has
a different algebra structure. Let σ = ∑

α σ′
α ⊗ σ′′

α ∈ P ⊗B∂ be an element dual to a linear section
composed with the projection, B∂ → B ↠ P . The CDGA G̃P (r) is defined as the quotient of
P ⊗r ⊗ S(ω̃ij)1≤i̸=j≤r/(ω̃2

ij) by two kinds of relations:
• For all b ∈ B and 1 ≤ i < j ≤ r,

(2.4.50) ιi(b)ω̃ij − (−1)nιj(b)ω̃ij +
∑

i,j,α,β

±ε∂(λ(b)σ′′
ασ′′

β)ιi(σ′
α)ιj(σ′

β) = 0.

• And for all b ∈ B and 1 ≤ i < j < k ≤ r,

(2.4.51) ιi(b)ω̃ijω̃ik + ιj(b)ω̃jiω̃jk + ιk(b)ω̃kiω̃kj

+
∑

i,j,k,α,β,γ

±ε∂(λ(b)σ′′
ασ′′

βσ′′
γ)ιi(σ′

α)ιj(σ′
β)ιk(σ′

γ) = 0.

While these relation might appear complicated, they have simple interpretations. For b = 1,
Eq. (2.4.50) says that ω̃ij is almost equal to ±ω̃ji, with a lower-weight corrective term (if weight is
the number of ω̃ in an expression). For arbitrary b, Eq. (2.4.50) says that ι∗ and ω̃ almost satisfy
the symmetry relation that allows one to move a decoration around on a connected component of
a graph. Eq. (2.4.51) has a similar interpretation with respect to the Arnold three-terms relation.
Note that these relations are tantalizingly similar to a “decorated” version of the generalized Jacobi
relation in the cohomology of non-k-equal configuration spaces of Rn [52, Eq. (3.3)] – investigating
this similarity would be worthwhile.

By extending and generalizing the techniques employed in the case of closed manifolds, we have
obtained (in joint work with Campos, Lambrechts, Willwacher):

Theorem 2.4.52 ([3]). Let M be a simply connected smooth manifold with simply connected boundary.
For any PLD model of M , the CDGA G̃P (r) is a model of ConfM (r) over R.

The hypothesis that ∂M is simply connected appears in the previous theorem for technical reasons.
However, it is absent from Th. 2.2.5. The following question seems reasonable:

Question 2.4.53. Can the condition that ∂M is simply connected be dropped from Th. 2.4.52?
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3 Operads

Most of the research that is presented in this memoir is closely related to the theory of operads. In
this part, after introducing the main notions of that theory, we explain how the results presented in
the previous part involve operadic methods, as well as present formality results that are purely about
operads. The theory of operads has a long and rich history, and we refer to [117] or [67, Part I(a)] for
more details.

3.1 Introduction to operads
In this section, we give a brief introduction to the theory of operads, and especially of the parts
relevant to the statements we want in connection to configuration spaces.

Let us fix C a symmetric monoidal category. An operad in C is an object that encodes a certain
category of algebras in C. Classical examples when C is the category of vector spaces over some field
include the operad that encodes associative algebras in C, the one that encodes commutative algebras,
or the one that encodes Lie algebras.

Notation 3.1.1. We denote FB the category of finite sets and bijections. For a pair W ⊆ U of sets,
we let U/W be the quotient set, and U → U/W , u 7→ [u] be the quotient map.

Definition 3.1.2. A symmetric collection (or FB-module) is a functor P : FBop → C.

Remark 3.1.3. The category of symmetric collections is equivalent to the (perhaps more familiar)
category of symmetric sequences, which consist of sequences P = {P(n)}n≥0 of objects of C equipped
with a right action of the symmetric group Σn on P(n). Given n = {1, . . . , n}, then any symmetric
collection P defines a symmetric sequence by P(n) := P(n).
Example 3.1.4. Let M be a manifold. The configuration spaces of M form a symmetric collection: for
a finite set U ,

(3.1.5) ConfM (U) := {(xu) ∈M×U | ∀u ̸= v, xu ̸= xv},

where M×U is the set of maps U →M .

Definition 3.1.6. An operad is a symmetric collection P endowed with the following structure:
• for any singleton {∗}, a morphism from the monoidal unit I of C (invariant under bijections of

singletons):

(3.1.7) η : I → P({∗});

• for any pair of sets W ⊆ U , a morphism:

(3.1.8) ◦W : P(U/W )⊗ P(W )→ P(U);

satisfying the following axioms:
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• (unit) for any U ∈ FB, and any u ∈ U , if we identify U/{u} = U and U/U = {∗}, then the
following diagrams commute:

(3.1.9)
P(U) P(U/{u})⊗ P({u})

P(U),

id⊗η

◦{u}

P(U) P(U/U)⊗ P(U)

P(U);

η⊗id

◦U

• (sequential composition) for any triple of sets W ⊆ V ⊆ U , identifying U/V = (U/W )/(V/W ),
the following diagram commute:

(3.1.10)
P(U/V )⊗ P(V/W )⊗ P(W ) P(U/V )⊗ P(V )

P(U/W )⊗ P(W ) P(U);

◦W

◦V/W ◦V

◦W

• (parallel composition) for any disjoint subsets W, W ′ ⊆ U , identifying U/W/W ′ = U/W ′/W ,
the following diagram commutes:

(3.1.11)
P(U/W/W ′)⊗ P(W )⊗ P(W ′) P(U/W ′)⊗ P(W ′)

P(U/W )⊗ P(W ) P(U).

◦W

◦W ′ ◦W ′

◦W

Example 3.1.12. The most fundamental and most illuminating example of operad is the endomorphism
operad of an object X ∈ C. This is in general an operad in the category of sets (though if C is closed
or enriched, one can also produce an endomorphism operad in other categories). The endomorphism
operad EndX is given by:

(3.1.13) EndX(r) := C(X⊗U , X),

where X⊗U is the colimit of the diagram indexed by total orders on U (with a single arrows between
any two orders), with constant value X ⊗ · · · ⊗ X (#U times) and which uses the symmetrical
monoidal structure to permute factors on arrows of the diagram. Symmetric groups act by permuting
input variables. The unit is simply idX ∈ EndX(1). The operadic structure maps are composition of
multi-variable maps.

Based on this example, given an operad P, it is customary to view an element p ∈ P(U) as an
operation with multiple inputs labeled by U , and a single input. The symmetric group action relabels
inputs, and partial composition is viewed as partial composition of operations. For example, if
p ∈ P({a, b, c}) and q ∈ P({x, y}):

(3.1.14) p

a b c

◦b q

x y

= p

a q

x y

b

Example 3.1.15. The trivial operad is the set operad I given by I(U) = {id} if #U = 1 and I(U) = ∅
otherwise.
Example 3.1.16. The (unital) associative operad is the set operad uAss given by uAss(U) = FB(U, U)
for all U . The action of FB is by precomposition, and the unit is id{∗} ∈ uAss({∗}). Operadic
composition is given by block composition of bijections.
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Example 3.1.17. The (unital) commutative operad is the set operad uCom given by uCom(U) = {∗}
for all U . The structure maps are the only possible ones.
Remark 3.1.18. The previous operads admit, of course, analogues in the category of vector spaces
over a field, in the category of topological spaces, etc. These analogue operads are usually be given
the same name and notation.
Remark 3.1.19. If P is an operad, then P({∗}) is naturally a monoid in C. Conversely, if M is a
monoid and C admits an absorbing element ∅ for the monoidal product, then we can define an operad
P by by setting P(U) = M for #U = 1 and P(U) = ∅ for other U .
Remark 3.1.20. The above definition of operads is written in terms of partial composition [123]. The
original definition of operads is written in terms of total composition [124] and is equivalent to the
previous definition in the presence of units. Given a symmetric collection P, an operad structure on P
is the data of a unit and, for any map of finite sets f : U → V , of operations:

(3.1.21) γf : P(V )⊗
⊗
v∈V

P(f−1(v))→ P(U),

satisfying equivariance, unit, and associativity axioms. Yet another point of view is to see an operad
as a monoid in the category of symmetric collections for the monoidal product given by the plethysm.
For symmetric collections P, Q, their plethysm is defined, for a finite set U , by the coend:

(3.1.22) (P ◦ Q)(U) :=
∫ V ∈FB

(
P(V )⊗

( ⊕
f : U→V

⊗
v∈V

Q(f−1(v))
))

.

The primary purpose of an operad is usually to define a representation category, whose objects are
called the algebras over the operad.

Definition 3.1.23. Let P be an operad and A be an object of C. A P-algebra structure on A is the
data of structure maps, for all finite sets U :

(3.1.24) γ : P(U)⊗A⊗U → U.

These structure maps must satisfy equivariance, unit, and associativity axioms.

Notation 3.1.25. Given a P-algebra A, an element p ∈ P(U), and a tensor ⊗u au ∈ A⊗U , we denote:

(3.1.26) p(⊗
u

au) := γ
(
p⊗

⊗
u

au

)
.

Remark 3.1.27. If C is closed, then a P-algebra structure is the same thing as a morphism of operads
P→ EndA, where EndA(U) is the internal hom object C(A⊗U , A).
Example 3.1.28. Let C be the category of sets. An algebra over I is just a set. An algebra over uAss is
a monoid. An algebra over uCom is a commutative monoid.

Notation 3.1.29. For a symmetric sequence E and an object X ∈ C viewed as a symmetric sequence
concentrated in arity zero, we will write

(3.1.30) E(X) := (E ◦X)(0) =
∫ V ∈FB(

P(V )⊗X⊗V ).
Remark 3.1.31. The map γ from Def. 3.1.23 can be reinterpreted as a map γ : P(A)→ A.
Example 3.1.32. Let P be an operad and V be an object of C. There is a natural P-algebra structure
on P(V ). This algebra satisfies a universal property that makes it the free P-algebra on V .
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In the definition of an algebra over an operad, the operad acts “on the left.” For example, a set X is
obviously an algebra over EndX via (f, (xi)) 7→ f(xi). The following notion is in that sense mirrored.

Definition 3.1.33. Let P be an operad. A right P-module is a symmetric collection M endowed, for
every pair of finite sets W ⊆ U , with structure maps:

(3.1.34) ◦W : M(U/W )⊗ P(W )→ M(U),

satisfying equivariance, unit, and associativity axioms.

Remark 3.1.35. Thanks to the presence of units in P, this definition is equivalent to the data of a right
module over the monoid P in the category of symmetric collections and plethysm (see Rem. 3.1.20).
Example 3.1.36. For any X, Y ∈ C, there is a natural right EndX -module defined by:

(3.1.37) EndX,Y (U) := C(X⊗U , Y ).

Example 3.1.38. A right I-module is just a symmetric collection. A right uCom-module is a functor
on the category of finite sets and all maps (rather than just bijections).

A key use of operadic right modules is the definition of functors.

Definition 3.1.39. Suppose that C has small colimits. Let P be an operad and M a right P-module.
There is a functor:

SM : P-Alg→ C, A 7→ coeq((M ◦ P)(A)⇒ M(A)).(3.1.40)

This property of operadic right modules, and the fact that plethysm of symmetric collections is
linear on the left but nonlinear on the right, makes right modules markedly different from their
cousins, left modules.

Definition 3.1.41. Let P be an operad. A left P-module is a symmetric collection N endowed, for
every map of finite sets f : U → V , with structure maps:

(3.1.42) γf : P(V )⊗
⊗
v∈V

N(f−1(v))→ N(U),

satisfying equivariance, unit, and associativity axioms.

Definition 3.1.43. Given operads P, Q, a (P, Q)-bimodule is a symmetric collection equipped with a
left P-action and a right Q-action that commute.

Remark 3.1.44. Since a left module has (in general) no unit, the notion of left module is not equivalent
to the one given in terms of partial compositions, called infinitesimal left modules. Infinitesimal right
modules are however the same thing as right modules.
Example 3.1.45. Let X, Y ∈ C be objects. Then EndX,Y (Ex. 3.1.36) is and (EndY , EndX)-bimodule.
It is not, however, an infinitesimal left EndY -module in general.

3.2 Little disks operads and configuration spaces
The proofs of the results of Sec. 2 on the homotopy types of configuration spaces involve operads in
some way. The relationship between operads and configuration spaces already appeared at the very
beginning of the development of operad theory under the form of the little cubes operads [27, 124].
In this section, we introduce these operads and their relationship to configuration spaces.

As a matter of personal preference (and to simplify some definitions in Sec. 3.5), we deal with their
equivalent cousins, the little disks operads (introduced in [78]).
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Notation 3.2.1. We write Dn for the closed unit n-disk, whose interior is denoted D̊n.
Definition 3.2.2. A standard embedding Dn → Dn is one that is obtained as a composite of a
positive rescaling and a translation.
Definition 3.2.3. Let n ≥ 1 be an integer. The little n-disks operad Dn is defined as a symmetric
collection, for a finite set U , by:

(3.2.4) Dn(U) :=
{

c : Dn × U → Dn

∣∣∣∣∣ each c( , u) is a standard embedding,

∀u ̸= v, c
(
D̊n, u

)
∩ c
(
D̊n, v

)
= ∅

}
.

Morphisms of FB act by precomposition on the second factor. The unit is idDn ∈ Dn(1). Partial
composition is given by composition of embeddings. See Fig. 3.1 for an illustration

b

a

c

◦b x

y

=
x

y

a

c

Figure 3.1: Example of the structure map ◦b : D2({a, b, c})× D2({x, y})→ D2({a, x, y, c}).

Remark 3.2.5. The operad Dn is almost the endomorphism operad of Dn in the subcategory of Top
given by disks and standard embeddings, with monoidal product given by disjoint union. However,
since the boundaries of two distinct disks are allowed to meet, this statement is not quite true.
Remark 3.2.6. This family of operads admit many variants. Any topological operad which is weakly
equivalent to Dn is called an En-operad. Examples include the little cubes operads Cn [124] or
the (Axelrod–Singer–)Fulton–MacPherson operads [79, 75, 17] (see Def. 3.4.18), or the Kontsevich
operads [105].
Remark 3.2.7. Note that Dn(∅) is a singleton, not the empty set. It is sometimes necessary to consider
the sub-operad obtained by removing the point of Dn(∅).

* * *
While we will not really need it in the study of configuration spaces, let us now explain what the
little disks operads were initially used for: the study of iterated loop spaces. We will briefly come
back to this in Sec. 3.5 when dealing with the Swiss-Cheese operad.
Definition 3.2.8. Let (X, x0) be a based space. The loop space ΩX is the space of continuous loops
γ : [0, 1] → X such that γ(0) = γ(1) = x0, endowed with the compact open topology. The n-fold
iterated loop space ΩnX (for n ≥ 0) is defined recursively by Ω0X = X and Ωn+1X = Ω(ΩnX).
Remark 3.2.9. An element of ΩnX can be viewed as a map γ : [0, 1]n → X such that γ(∂[0, 1]n) = {x0}.
Proposition 3.2.10. For any based space (X, x0), the n-fold iterated loop space is an algebra over
the little cubes operad Cn (see Rem. 3.2.6), with structure maps defined by:

Cn(U)× (ΩnX)×U → ΩnX, c(γ) : [0, 1]n → X,

(c, γ) 7→ c(γ); x 7→
{

γu(y), if ∃(y, u) s.t. x = c(y, u),
x0, otherwise.

(3.2.11)
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This structure defines a rich structure on the homology of an iterated loop space. Note that if
P is a topological operad, then H∗(P) is a linear operad, and if A is a P-algebra, then H∗(A) is an
H∗(P)-algebra. Since Cn and Dn are (weakly) homotopy equivalent as topological operads, their
homologies are isomorphic.

Proposition 3.2.12. The homology of D1 is the (linear version of the) operad uAss of Ex. 3.1.16.

Theorem 3.2.13 (Cohen [42]). Let n ≥ 2. The homology of Dn is the operad uPoisn of unital
n-Poisson algebras, which encodes objects A equipped with a commutative product of degree 0, a Lie
bracket of (cohomological) degree 1 − n, such that the bracket is a biderivation with respect to the
product, and a unit which is central for the Lie bracket.

Remark 3.2.14. In positive characteristic, the homology of ΩnX inherits even more structure than
that of an n-Poisson algebra, because of the symmetric group actions. One recovers Dyer–Lashof
operations.

Heuristically speaking, a Dn-algebra is an algebra equipped with a product that is associative up
to strong homotopy, i.e.: there is a homotopy between (a, b, c) 7→ (ab)c and (a, b, c) 7→ a(bc); this
induces two distinct homotopies between (a, b, c, d) 7→ a(b(cd)) and (a, b, c, d) 7→ ((ab)c)d, and there
is a homotopy between; and so on, in every homotopical degree. Moreover, an algebra over Dn is
homotopy commutative up to degree n− 1, that is, in D2 there is a homotopy between (a, b) 7→ ab
and (a, b) 7→ ba, but the composition may be a nontrivial loop (Fig. 3.2); in D3, this loop is filled
by a homotopy, but this may define a nontrivial sphere; and so on. At the level of homology, the
mere existence of a homotopy makes the product into a strictly commutative one, but the nontrivial
(n− 1)-sphere is witnessed by the Lie bracket.

1 2 ⇝ 12 ⇝ 1 2

Figure 3.2: A homotopy between the product and the opposite product in D2 yields a nontrivial loop.
It becomes trivial in D3, but the homotopy making it trivial (second picture) then yields
a nontrivial sphere when composed with its mirror image.

The following recognition principle is a kind of converse to Prop. 3.2.10:

Theorem 3.2.15 (Stasheff [156] for n = 1, Boardman–Vogt [28] and May [124] for all n). Let Y be a
Dn-algebra (in a suitable category of topological spaces). Assume that the induced monoid structure
on π0Y defines a group. Then there exists a based space X and a zigzag of weak equivalences of
Dn-algebras Y ≃ ΩnX.

* * *
Let us now get back to the main point of this section. The relationship between Dn and configuration
spaces comes from the following result:

Proposition 3.2.16. For each n ≥ 0 and finite set U , the “center” map defined next is a homotopy
equivalence:

(3.2.17) ctr : Dn(U)→ ConfRn(U), c 7→ (c(0, u))u∈U .
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Moreover, if a manifold M is framed (i.e., it is equipped with a trivialization of its tangent bundle),
one can also define an operadic structure on the configuration spaces of M up to homotopy.
Definition 3.2.18. Let M be a closed smooth manifold of dimension n equipped with a framing, i.e.,
a bundle isomorphism τ : TM →M × Rn. The symmetric collection DM is defined on a finite set U
as the set of pairs of smooth maps and numbers (c : Dn × U →M, λ > 0) such that:

• for all u ∈ U , c( , u) is an embedding;
• for all u ̸= v ∈ U , the sets c(D̊n, u) and c(D̊n, v) are disjoint;
• for all u ∈ U , the following diagram commutes:

(3.2.19)
TDn × U TM

Dn × Rn × U M × Rn.

dc

canon. ∼= τ∼=

(x,v,u)7→(c(x,u),λv)

Proposition 3.2.20. Let M be as in the previous definition. For all U , the “center” map ctr : DM (U)→
ConfM (U) is a homotopy equivalence.
Proposition 3.2.21. Let M be as above. Composition of embeddings makes DM into a right
Dn-module.

If the manifold M is not framed but merely oriented, the above definition does not make sense.
However, it is possible to build an operadic structure out of the framed configuration spaces of M
(Eq. (2.4.30)) and the framed little disks operads.
Definition 3.2.22 (Salvatore–Wahl [147]). Let G be a (topological) group and P be an operad in
the category of G-spaces. The semidirect product P ⋊ G is the topological operad whose underlying
symmetric collection is given by:

(3.2.23) (P ⋊ G)(U) := P(U)×G×U .

The unit is (idP, 1) and the morphisms of FB act diagonally on the product (by permutation of G×( )).
The partial composite of (p, (g[u])) ∈ P(U/W )×G×(U/W ) and (q, (hw)) ∈ P(W )×G×W is given by:

(3.2.24) (p, (g[u])) ◦W (q, (hw)) := (p ◦W g[W ]q, (ku)),

where (ku) ∈ G×U is defined by ku = gu for u ̸∈W and kw = g[W ]hw for u ∈W .

Definition 3.2.25. The framed little n-disks operad Dfr
n is the semidirect product Dn ⋊SO(n), where

SO(n) acts on Dn(U) by postcomposition.
Concretely, an element of Dfr

n(U) is a configuration of interior-disjoint little n-disks obtained by
positive rescaling, translation, and viewed as being postcomposed by an oriented isometry (which
does not change the image of the embedding). Composition is the same as in Dn, except that when a
configuration of disks is inserted into a slot, the whole configuration is moved by the isometry at that
slot. See Fig. 3.3
Definition 3.2.26. Let M be a closed oriented smooth manifold. The symmetric collection Dfr

M

is defined just like DM (Def. 3.2.18), but the requirement that the differential of each embedding
is a positive rescaling is dropped and replaced with the condition that each embedding preserves
orientation.

Let (ei)1≤i≤n be the canonical basis of T0Dn = Rn.
Proposition 3.2.27. The “center + frame” map defined next is a homotopy equivalence:

Dfr
M (U)→ Conf fr

M (U), c 7→
(
c(0, u), (dc((0, u), ei))1≤i≤n

)
.(3.2.28)

Proposition 3.2.29. Composition of embeddings define a right Dfr
n -module structure on the symmetric

collection Dfr
M .
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b
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c

◦b x

y

=
x

y

a

c

Figure 3.3: Example of the structure map ◦b : Dfr
2 ({a, b, c})×Dfr

2 ({x, y})→ Dfr
2 ({a, x, y, c}). The small

notches represent rotations compared to the horizontal axis.

3.3 Homotopy types of operads and modules
The results presented in Sec. 2, such as the formality of ConfRn(U) or the computation of the real
homotopy type of ConfM (U), were all presented purely in terms of homotopy types of spaces. All
these results can be upgraded in operadic terms: the models for ConfM given are compatible with
the operadic structures involved.

Properly defining rational or real homotopy theory for operads and modules is, however, somewhat
tricky. The main issue is that the functor of forms Ω∗ (either Ω∗

PL or Ω∗
PA, see Sec. 2.3) is contravariant.

One could think that if P is a topological operad, then Ω∗(P) would form a cooperad:

Definition 3.3.1. Let C be a symmetric monoidal category. A cooperad in C is a symmetric collection
C endowed with a counit ε : C({∗})→ I and, for all pairs of finite sets W ⊆ U , with cocomposition
maps:

(3.3.2) ◦∨W : C(U)→ C(U/W )⊗ C(W ),

satisfying equivariance, counit, and coassociativity conditions. Operadic left (resp., right, bi-) modules
are defined analogously.

Definition 3.3.3. If C is the category of CDGAs, then cooperads and comodules in C are called
“Hopf cooperads” and “Hopf comodules.”

Remark 3.3.4. Working with cooperads is the main motivation for using symmetric collections instead
of symmetric sequences. Tracking the numerical indices in the cooperad structure can become quite
involved and error-prone.

In general, though, Ω∗(P) does not define a cooperad for an operad P. The issue is that the Künneth
quasi-isomorphism goes in the wrong direction and is not strictly invertible, so that we only get a
map in the homotopy category, i.e., a zigzag:

(3.3.5) Ω∗(P(U))
◦∗

W−−→ Ω∗(P(U/W )× P(W )) ∼←− Ω∗(P(U/W ))⊗ Ω∗(P(W )).

There exist several ways around this issue. One direction, taken in [112], is to define an ad-hoc
notion of a “morphism into” Ω∗(P) and a notion of zigzag of quasi-isomorphisms (i.e., weak equivalence)
between a genuine Hopf cooperad and Ω∗(P). Another (see e.g., [98]) is to view Ω∗(P) as a Hopf
cooperad up to homotopy. While these approaches are fruitful, it remains to prove that the resulting
homotopy category is equivalent to that of topological operads (involving simply connected spaces of
finite) up to rational/real homotopy equivalence.
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The most complete approach is the one from [68], who upgraded the functor Ω∗
PL into a functor Ω∗

♯

from topological (or rather simplicial) operads P such that P(0) = P(1) = {∗} to the category of Hopf
cooperads. A morphism into Ω∗

♯ (P) is equivalent to a “morphism into” Ω∗
PL(P) as defined in [112],

and if P is cofibrant, then Ω∗
♯ (P(U)) ≃ Ω∗

PL(P(U)). Moreover, the functor Ω∗
♯ is indeed an equivalence

on homotopy category when restricted to operads with simply connected finite-type components.
This construction was refined and generalized to apply to operads that do not necessarily satisfy
P(1) = {∗} [69]. The theory also applies mutatis mutandis if Ω∗

PL is replaced by Ω∗
PA [5, Rem. 7] and

adaptations can be made for operadic right modules [73].
As mentioned in Sec. 2, the configuration spaces ConfRn(U) are formal as topological spaces. But

as we saw in Sec. 3.2, each ConfRn(U) is homotopy equivalent to Dn(U), so that the cohomology of
these configuration spaces are equipped with a Hopf cooperad structure. This structure is given, for a
pair of finite sets W ⊆ U and using the presentation of Th. 2.4.1, by the following maps [42]:

◦∨W : H∗(Dn(U))→ H∗(Dn(U/W ))⊗H∗(Dn(W )),

ωuv 7→
{

1⊗ ωuv, if u, v ∈W,

ω[u][v] ⊗ 1, otherwise.
(3.3.6)

The description of H∗(Dn) in terms of graphs (see the discussion following Th. 2.4.1) makes the
cooperad structure map easier to handle. Given a graph Γ ∈ H∗(Dn(U)), one has ◦∨W (Γ) = ΓU/W⊗ΓW ,
where ΓW is the full subgraph of Γ on the vertex set W , and ΓU/W is the graph obtained from Γ by
collapsing ΓW to a single vertex.

Th. 2.4.9 can be upgraded to be a statement about the homotopy type of the operad Dn:

Theorem 3.3.7 (Kontsevich [105], Tamarkin [159], Lambrechts–Volić [112], Petersen [131], Fresse–Willwacher
[72], and Boavida de Brito–Horel [29]). For all n ≥ 1, the operad Dn is formal over Q, i.e., there
exists a zigzag of weak equivalences of Hopf cooperads Ω∗

♯ (Dn) ≃ H∗(Dn).

Remark 3.3.8. An even stronger statement is true [72]: Dn is intrinsically formal, i.e., any Q-good
connected operad with the same homology as Dn as a Hopf operad, with an extra condition when
n ≡ 0 (mod 4), is formal and thus rationally equivalent to Dn.

For the framed little disks operads, the situation is subtler.

Theorem 3.3.9 (Giansiracusa–Salvatore [80] and Ševera [152] for n = 2, Moriya [130] for odd n,
Khoroshkin–Willwacher [98] for all n). Let n ≥ 2. The framed little n-disks operad Dfr

n is formal if
and only if n is even.

Remark 3.3.10. Note that the space Dfr
n(U) ≃ ConfRn(U)× SO(n)×U is formal for all n ≥ 1 and U .

The non-formality result for odd n is truly about the operadic structure.
Remark 3.3.11. In fact, a stronger statement is true: the (genuine) dg-operad given by the chains
C∗(Dfr

n) is not formal for odd n.
Remark 3.3.12. The proofs of the formality of Dfr

2 [80, 152] are fairly explicit. For even n ≥ 4, though,
the proof of [98] relies on obstruction-theoretical arguments.

The previous theorems and their proofs have important consequences, e.g., in deformation quanti-
zation [106] or embedding calculus [71].

The proof of Kontsevich [105] (as completed by Lambrechts–Volić [112]) is of particular interest
to us. Recall that if M is a closed framed manifold, then the symmetric collection ConfM is a right
module over Dn up to homotopy. This structure should be reflected on models of ConfM , i.e., it is
possible to find models of ConfM that assemble to right Hopf H∗(Dn)-comodules. Similarly, if M is
just oriented, then Conf fr

M is a right module over Dfr
n up to homotopy, and one should be able to find

models of these configuration spaces that assemble to right Hopf comodules over a model of Dfr
n . By

adapting and generalizing the methods of [105, 112], we get:
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Theorem 3.3.13 ([5, 34, 2, 3, 4]). The models given in Th. 2.4.18, 2.4.31, 2.4.34, and 2.4.52 are
compatible with the actions of Dn or Dfr

n (depending of the theorem).

In the work of Khoroshkin–Willwacher [98], the authors study the non-oriented framed little disks
operad, Dn ⋊ O(n) (rather than Dn ⋊ SO(n)). The following question is natural, but some technical
difficulties arise from the disconnected nature of O(n):

Question 3.3.14. Can the result of Th. 2.4.31 be upgraded to the non-oriented case?

3.4 Graph complexes
The proofs of the results summarized by Th. 3.3.13 all involve graph complexes. Graph complexes
are combinatorial objects introduced by Kontsevich [104] based on the perturbative expansion of
Chern–Simons theory (see Axelrod–Singer [16, 17]). While they find their roots in mathematical
physics, their uses have expanded far beyond, see Willwacher [171] for a survey.

In this section, we give a brief introduction to graph complexes, we explain how they relate to
configuration spaces, and we give the results of some key computations necessary to prove the results
of Sec. 2.
Remark 3.4.1. In what follows, we consider the cohomological versions of the graph complexes, i.e.,
differentials contract edges, as the primary objects. Most of the literature considers the homological
versions as the primary objects. The homological version is linearly dual to the cohomological one.
Since graph complexes are often infinite-dimensional, linear duality is a one-way road, so as a matter
of personal preference, we define the predual rather than the dual. Notation regarding the restrictions
on valences of vertices is also variable in the literature.

Let n ∈ Z be any integer (typically, the dimension of a manifold, but not necessarily). Let us define
the cohomological version GCn of the simplest version kind of graph complexes, due to Kontsevich
[104]. To define it, we consider the set of connected graphs Γ = (VΓ, EΓ) with some finite set of vertices
VΓ and some finite set of edges EΓ. A half-edge of Γ is a pair (e, ε) where e ∈ EΓ and ε ∈ {+1,−1}.
The degree of such a graph Γ is:

(3.4.2) deg(Γ) := (n− 1)#EΓ − n#VΓ − n.

The notion of “orientation set” of such a graph differs depending on the parity of n.
• If n is even, then the orientation set of Γ is the set of edges of Γ.
• If n is odd, then the orientation set of Γ is the pair of sets given by the vertices of Γ and the set

of half-edges of Γ.
We consider the vector space GC⟲n consisting of formal linear combinations of pairs (Γ, o), where Γ is
a graph and o is an ordering of the orientation set of Γ, modulo the relation (Γ, o) ∼ ε(σ)(Γ, o · σ) for
all permutations σ of the orientation set (with ε(σ) being the sign of σ).
Remark 3.4.3. We often allow ourselves to drop o from the notation and the pictures. However, we
have to keep in mind it is necessary to consider it to get well-defined formulas and signs.
Remark 3.4.4. The behavior of the symmetries greatly differs depending on the parity of n. If n
is even, for example, any graph containing a multiple edge (i.e., two or more edges with the same
extremities) vanishes in the quotient, as exchanging the order of the edges yields an odd symmetry.
Similarly, if n is odd, then any graph containing a tadpole (i.e., an edge whose two extremities are
equal) vanishes in the quotient.

We now define a differential d on GC⟲n . Given some graph Γ as above, its differential is a sum of
edge contractions:

(3.4.5) d(Γ) :=
∑

e∈EΓ

±Γ/e,
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where Γ/e is the graph obtained from Γ by contracting the edge e, i.e., by merging the two extremities
of e and removing it from the new graph. See Fig. 3.4 for an example. One has to be mindful of the
orientation set to define the ± sign properly.

d7−→ ± ± ± ± .

Figure 3.4: An example of differential on GC⟲n . We color the edges differently so that one can see
better the differential, but depending on the parity of n, edges may or may not be ordered.
Note that the last two graphs in d(Γ) must vanish no matter the parity of n; the first two
are equal up to sign.

There are two special cases for the differential d:
• If Γ = consists of exactly two vertices and a single edge between then, then d(Γ) = −

is the opposite of the graph with a single vertex and no edge;
• If Γ is not the graph of the previous case, and if an edge e is adjacent to a vertex which is

adjacent only to e, then Γ/e is dropped from the sum defining d(Γ).
Remark 3.4.6. These oddities can be explained by the fact that the corresponding summands actually
appear either three times (with alternating signs) or twice (with opposite signs) in the sums. See
Remark 3.4.13.

Definition 3.4.7. The graph complex (with loops) in dimension n is the vector space GC⟲n defined
above equipped with the differential d.

Remark 3.4.8. The above definition is self-contained but rather “hands-on.” It is possible to define
graph complexes using the general theory of operadic twisting [53, 54].

We now define interesting quotients of GC⟲n based on valence, i.e., the number of edges incident to
a given vertex.

Lemma 3.4.9. The quotient GC≥1
n of GC⟲n by the subspace spanned by graphs containing tadpoles

and/or multiple edges is a quotient complex. The quotients GC≥2
n (resp., GC≥3

n ) of GC≥1
n by the

subspace spanned by graphs containing at least a vertex of valence < 2 (resp., < 3) is a quotient
complex.

Proposition 3.4.10. The cochain complex GC⟲n is equipped with a Lie coalgebra structure given by
the sum of all possible ways of contracting subgraphs (not necessarily full):

(3.4.11) δ : GC⟲n → (GC⟲n )∧2, Γ 7→
∑

Γ′⊆Γ
±Γ/Γ′ ∧ Γ′.

This structure is compatible with the quotients defining GC≥1
n , GC≥2

n , and GC≥3
n .

Remark 3.4.12. As mentioned above, we are using slightly nonstandard notation. The linear dual of
GC≥3

n is what is usually called the (Kontsevich) graph complex. This dual is equipped with a more
familiar Lie algebra structure, rather than a coalgebra structure.
Remark 3.4.13. With the Lie coalgebra structure, we can give the “true” definition of the differential
of GC⟲n . Let z : GC⟲n → Q be the map which evaluates to 1 on the graph with a single edge and a
single vertex, and 0 on all other graphs. Then z is a Maurer–Cartan element for the Lie coalgebra
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(GC⟲n , d = 0), in the sense that (z ⊗ z)δ = 0. The differential on GC⟲n is then the twist with respect
to this Maurer–Cartan element, i.e.,

(3.4.14) d(Γ) = (z ⊗ id + id⊗ z)δ(Γ).

This explains the “oddities” of Rem. 3.4.6. Indeed, for a subgraph Γ′ ⊆ Γ, we have (z ⊗ id)δ(Γ) = 0,
unless Γ \ Γ′ consists of a single edge. This happens twice if Γ is the graph consisting of two vertices
and a single edge (once for each of the two vertices), and otherwise once for every edge attached to a
univalent vertex.

Despite the apparent simplicity of the definition, the (co)homologies of the graph complexes are
tremendously difficult to compute. Willwacher [168] proved that GCn is quasi-isomorphic to GC≥2

n ,
and that the homology of GC≥2

n is equal to that of GC≥3
n plus an extra summand given by loop

graphs. The heart of the difficult thus lies in GC≥3
n . As a striking example, let us mention:

Theorem 3.4.15 (Willwacher [168, Th. 1.1]). The homology of the dual of GC≥3
2 in degree zero is

isomorphic to the Grothendieck–Teichmüller Lie algebra grt1.

The Lie algebra grt1 is the Lie algebra of a prounipotent group GRT1 defined by Drinfeld [55]. This
group and its variants appear in a dizzying array of contexts: initially in the study of the absolute
Galois group of Q [86], in the study of quantum groups, deformation quantization of Lie bialgebras
and Poisson manifolds, polyzeta values, and homotopy automorphisms of the little disks operad.
See [149] or [67, Chapter 12] for more information.

* * *
Graph complexes feature prominently in the proof of the formality of Dn by Kontsevich [105]. To
explain how they appear, we first introduce operads equivalent to the little n-disks operads, the Fulton–
MacPherson operads FMn. These operads are built out of compactifications of the configuration
spaces of Rn that were initially introduced by Axelrod–Singer [17] (and that are analogous to
constructions developed by Fulton–MacPherson [75] in the complex setting). We refer to Sinha [154]
and Lambrechts–Volić [112] for an extensive treatment.

To explain these compactifications, let us consider the space ConfRn(U). Heuristically, this space is
noncompact for two reasons: a configuration can grow infinitely big or escape to infinity, and two or
more point can converge to the same location.

The first reason comes from noncompactness of Rn and it is easy to deal with it: we can simply
mod out by the group of translations and positive rescalings to obtain the (n#U −n− 1)-dimensional
manifold

(3.4.16) ConfRn [U ] := ConfRn(U)/(Rn ⋊R>0).

Geometrically, one can imagine that we consider configurations of points with isobarycenter at the
origin and diameter 1.

To deal with the second reason for noncompactness, though, another approach is needed. A
class in the quotient is completely determined by the pairwise angles between two points, and by
the relative distances between three points, i.e., by the images of the following maps (defined for
u ̸= v ̸= w ̸= u ∈ U):

θuv : ConfRn [U ]→ Sn−1 δuvw : ConfRn [U ]→ [0, +∞]

[x] 7→ xv − xu

∥xv − xu∥
; [x] 7→ ∥xw − xu∥

∥xv − xu∥
.(3.4.17)

Definition 3.4.18. The space FMn(U) is the closure of the image of ConfRn [U ] in
(
Sn−1)ConfU (2) ×

[0, +∞]ConfU (3).
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Intuitively, an element of FMn(U) can be seen as a configuration of points, where two or more points
are allowed to become infinitesimally close relative to the other points. However, in that situation, we
keep all the information (angles, relative distances) necessary to reconstruct a configuration out of
all the collided points, see Fig. 3.5. It is then possible that inside that infinitesimal configuration,
some points become even closer together relative to the other points, and so on. In that way, FMn(U)
consists of nested configurations.

1

3

2

4

Figure 3.5: An element of FM2(4). The points 2 and 4 are infinitesimally close to each other, with a
macroscopic position indicated by the “looking glass.”

Proposition 3.4.19. The space FMn(U) is a compact manifold with boundary of dimension n#U−n−1
(or 0 if #U ≤ 1) whose interior is ConfRn [U ]. The collection FMn assembles to form a topological
operad.

Given x ∈ FMn(U/W ) and y ∈ FMn(W ), the element x◦W y ∈ FMn(U) is a configuration composed
of the points of x, with x[W ] replaced with an infinitesimal configuration consisting of the points of y.
For example, the element of Fig. 3.5 is in the image of ◦{2,4} : FM2({1, 3, ∗})× FM2({2, 4})→ FM2(4).
The operad structure maps are defined explicitly in terms of the “coordinates” θuv and δuvw, and it is
instructive to figure out the formulas (see [112]).

Theorem 3.4.20 (Salvatore [144]). The operad Dn is weakly equivalent to FMn.

Example 3.4.21. The spaces FMn(0) and FMn(1) are singletons. The map θ12 : FMn(2)→ Sn−1 is a
homeomorphism.
Example 3.4.22. The space FM1(U) is a union of (#U)! copies of associahedra, which were introduced
by Stasheff [156].

The boundary of FMn(U) is particularly interesting. It decomposes into a union of “faces” (of
codimension 1 in FMn(U)) whose pairwise intersections are of codimension ≥ 2, i.e., we may view
FMn(U) as a manifold with corners. These faces are precisely the images of the structure maps
◦W : FMn(U/W )× FMn(W )→ FMn(U) for #W ≥ 2.

Moreover, let us consider the projection π : FMn(U ⊔I)→ FMn(U) which, for finite sets U, I, forgets
the points indexed by I in a configuration. This is a fiber bundle, but not a submersion in general [112,
Ex. 5.9.1]. The fiberwise boundary of π is the subspace:

(3.4.23) FM∂
n(U ; I) :=

⋃
x∈FMn(U)

∂π−1({x}).
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This is a subspace of ∂FMn(U ⊔ I) which consists of the faces im(◦W ) for W ⊆ U ⊔ I satisfying
#W ≤ 2, and U ⊆W or #(W ∩ U) ≤ 1.

The heart of the proof of Kontsevich [105] (reformulated by Lambrechts–Volić [112]) is then to
build a CDGA Graphsn(U) out of graphs which sits in a zigzag of quasi-isomorphisms:

(3.4.24) H∗(Dn(U)) ∼←− Graphsn(U) ∼−→ Ω∗(FMn(U)).

The CDGA Graphsn(U) is spanned by graphs similar to those that span GC≥3
n , except they now have

two kinds of vertices. The first kind, called internal vertices, are indistinguishable among themselves
and behave similarly to the vertices of graphs in GC≥3

n . The second kind, called external vertices, are
equipped with a bijection to U and are seen as “fixed.” The degree of a graph Γ is (n−1)#EΓ−n#IΓ,
where EΓ is the set of edges and IΓ is the set of internal vertices. Graphs are not necessarily connected
anymore, but we mod out by graphs where a connected component contains only internal vertices
(also known as internal components).

The differential is defined analogously to that of GC≥3
n , except that edges between two external

vertices are not contracted, and an edge between an external and an internal vertex results in an
external vertex with the same label as the one of the original external vertex – see Fig. 3.6 for an
example. Finally, the product consists in gluing graphs together at the external vertices, and the
cooperad structure is given by subgraph contraction.

a b c

d7−→
a b c

±
a b c

±
a b c

±
a b c

±
a b c

.

Figure 3.6: The differential in Graphsn({a, b, c}). The graphs containing double edges are actually
modded out in the definition of the CDGA.

Remark 3.4.25. The CDGA Graphsn(U) is quasi-free, i.e., free as a CGA. Its generators are given by
“internally connected graphs,” i.e., graphs that remain connected when internal vertices are removed
(but dangling edges are kept).

The left map in Equation (3.4.24) is merely the quotient map that mods out the graphs containing in-
ternal vertices, and which sends an edge euv between u, v ∈ U to the generator ωuv ∈ Hn−1(ConfRn(U)).
Proving that this map is well defined, that it commutes with the cooperad structure maps, and that
it is a quasi-isomorphism, is nontrivial but purely algebraic.

The right map in Equation (3.4.24) is much more difficult to construct. If Γ ∈ Graphsn(U) is a
graph, we can temporarily index its internal vertices by a set I. If voln−1 ∈ Ωn−1(Sn−1) is a volume
form, then the take the wedge product over all the edges of Γ:

(3.4.26) I ′(Γ) :=
∧

e∈EG

θ∗
s(e)t(e)(voln−1) ∈ Ω(n−1)#EΓ(FMn(U ⊔ I)).

Then, we perform the integration along the fibers of the projection map π : FMn(U ⊔ I)→ FMn(U):

(3.4.27) I(Γ) := π∗(I ′(Γ)) =
∫

FMn(U⊔I)→FMn(U)
I ′(Γ) ∈ Ωdeg(Γ)(FMn(U)).

Then the Stokes formula, the description of the fiberwise boundary of π, and computations of special
cases of integrals, show that I(dΓ) = dI(Γ). A key part of the argument is checking that I vanishes on
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graphs with internal components, which can be produced by the cooperad structure (if one contracts
a disconnected subgraph). While for n = 2 this computation is done by ad-hoc means (the Kontsevich
symmetry trick [104, Lem. 2.1]), for n ≥ 3 this follows from a degree counting argument. This proves
that integrating away an internal component is the same thing as applying the Maurer–Cartan element
z from Rem. 3.4.13.

Similar tools are used to prove that I is a CDGA map, and that it commutes with the cooperad
structure. Finally, every generator of the cohomology is clearly hit by I, as they are images of graphs
with no internal vertices and exactly one edge. Since Graphsn was previously shown to have the
correct cohomology, this ends the proof.

The devil is, of course, in the details. One of the most difficult parts of the proof is to define the
integration map π∗ properly, and check that it satisfies various properties expected of integration
along the fibers of a bundle. Such a construction is lacking for piecewise linear forms. It exists
for de Rham forms and submersions; however, as previously stated, the projections FMn(U ⊔ I)→
FMn(U) are, in general, not submersions. These projections are, however, semi-algebraic bundles.
Hardt–Lambrechts–Turchin–Volić [89], based on insights of Kontsevich–Soibelman [107], developed in
depth the homotopy theory of semi-algebraic sets, piecewise semi-algebraic forms, and integration
along the fibers of semi-algebraic bundles. This allowed Lambrechts–Volić [112] to complete the proof
whose steps we outlined above.

* * *
We view this proof as a template to find models of configuration-space-like collections C(M) of some
manifold M . The steps of that template are essentially the following:

1. Define suitable compactifications C[M ] of C(M), to ensure that integrals converge and to define
operadic structures. Prove that the projections Ck+r(M) → Ck(M) extend to fiber bundle
maps on the compactifications.

2. Find a candidate operadic model G(M) for C(M). For example, H∗(Dn), GA, G̃P , Gfr
Sg

from
Sec. 2.3.

3. Define an “algebraic” resolution R0(M) of G(M) using graph-like complexes and check (alge-
braically) that R0(M) is quasi-isomorphic to G(M) as an operadic object.

4. Internal components define a graph complex GCC,M , and integrating away these internal compo-
nents defines a “transcendental” Maurer–Cartan element z ∈ GCC,M . Define a “transcendental”
graph-like resolution Rz(M), obtained by twisting R0(M) by z.

5. Define integral maps I : Rz(M)→ Ω∗(C[M ]) compatible with operadic structures.
6. Prove that the homology of GCC,M vanishes in just the right place to deduce that the transcen-

dental Maurer–Cartan element z is trivial up to homotopy (i.e., gauge equivalent to 0), thus
proving that R0(M) and Rz(M) are equivalent as operadic objects.

This template, or parts of it, was applied to get the results summarized by Th. 3.3.13.
Remark 3.4.28. The algebraic side of this template (and much more) has now been developed in
depth by Willwacher [172].
Remark 3.4.29. For Dn, steps 4 and 6 are missing, as integrating away internal components already
gives the same Maurer–Cartan element as the algebraic resolution. However, in general, these steps
are necessary and highly nontrivial.
Remark 3.4.30. As evidenced by the large and complicated zeroth homology of GC3

2, implementing
step 6 is often hard. There is now a large literature on the computation of graph homology, including
a variety of techniques – too large and quickly moving to reproduce here. Let us perhaps mention, at
the risk of being less than exhaustive, the results of Khoroshkin–Willwacher–Živković [99] and its
sequels, Felder–Naef–Willwacher [58], Bar-Natan–McKay [21]. . .

Computations of graph homology can prove invaluable. Their uses include the computation
homotopy invariants of the spaces of long knots [13, 70, 71], or the cohomology of moduli spaces of
curves [35].
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As an example of the type of question that we would like to see answered as part of this program,
let us give an example for step 1 that we have found arduous:

Question 3.4.31. How to define an analogue of the Fulton–MacPherson compactification for the
non-k-equal configuration spaces of Eq. (2.1.3)?

3.5 Swiss-Cheese operads
Let us conclude this part with some results that are purely operadic in nature. These results concern
the Swiss-Cheese operads SCn and its variants. The Swiss-Cheese operads were introduced by Voronov
[167] based on the use of configuration spaces of the upper half-plane by Kontsevich [106] and the
study of open-closed string theory by Zwiebach [173]. The operad SCn, for n ≥ 1, is a colored operad
that encodes a structure on a pair of objects (A, B), namely, the data of a Dn-structure on A, a
Dn−1-structure on B, and (heuristically) a morphism of Dn-algebras from A to the “center” of B.

We will not define colored operads in general. Let us just say that colored operads are to operads
what categories are to monoids. We will only define a special kind of colored operads that fit the case
of SCn, namely, relative operads, also known as Swiss-Cheese type operads.

Definition 3.5.1. Let P be an operad in a symmetric monoidal category C. A relative P-operad is
an operad in the category of right P-modules.

As this definition is quite compact, let us unpack it. A relative P-operad is a bisymmetric collection,
i.e., a functor Q : FBop × FBop → C. For an element q ∈ Q(U, V ), the first set of inputs are called the
open inputs, while the second set of inputs are called the closed inputs. It is understood that the
output of an element of Q is open, while the input of an element of P is closed, and only matching
inputs/outputs can be composed. More precisely, there are structure maps, for every finite sets
W ⊆ U , R ⊆ S, T (see Fig. 3.7):

◦W : Q(U, S/R)⊗ P(R)→ Q(U, S);(3.5.2)
◦W,T : Q(U/W, S)⊗ Q(W, T )→ Q(U, S ⊔ T );(3.5.3)

as well as actions of the symmetric groups and a unit in Q(1, 0) which satisfies the obvious axioms.

q

u s u′ u′′ s′

◦s p

r r′

= q

u p

r r′

u′ u′′ s′

,

q

u s u′ u′′ s′

◦u′ q′

w t w′

= q

u s q′

w t w′

u′′ s′

.

Figure 3.7: Composition in a relative operad. Closed edges are normal, open edges are double.
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Example 3.5.4. Let X, Y be objects in some symmetric monoidal category C. The prototypical
example of relative operad is the relative EndX -operad End2

X,Y defined by:

(3.5.5) End2
X,Y (U, S) := C(Y ⊗U ⊗X⊗S , Y ).

Definition 3.5.6. An algebra over a relative P-operad Q is a couple (A, B) where A is a P-algebra
and the couple is equipped with structure maps:

(3.5.7) Q(U, S)⊗B⊗U ⊗A⊗S → B,

satisfying obvious axioms.

Remark 3.5.8. If the category C is closed, then this is the same thing as a morphism of relative
operads (P, Q)→ (EndA, End2

A,B) for the enriched version of the endomorphism operads.
Let us now define the Swiss-Cheese operad SCn for n ≥ 1. We write σ : Dn → Dn for the reflection

along Dn−1 = Dn−1 × {0}, and we let:

(3.5.9) Dn
+ := Dn ∩ Rn−1 × R+.

Definition 3.5.10. For finite sets U, T , we let T ′ be a disjoint copy of T , and for t ∈ T we let t′ ∈ T ′

be the matching element. The space of operations SCn(U, S) is defined by:

(3.5.11) SCn(U, S) :=
{

c ∈ Dn(U ⊔ S ⊔ S′)
∣∣∣∣∣ ∀u ∈ U, im(c( , u)) = σ(im(c( , u)));
∀t ∈ T, im(c( , t)) = σ(im(c( , t′))) ⊆ Dn

+.

}
.

In plain words, the disks indexed by U are self-symmetric with respect to Dn−1, while the disks
indexed by S are symmetric to the ones indexed by S′ and contained in the upper half-disk. The
operad structure is obtained by restricting that of Dn.

When drawing an element of SCn(U, S), it is customary to only draw the content of the upper
half-disk, since the content of the lower half-disk is uniquely determined by that. See Fig. 3.8 for an
example.

a b

x

y

Figure 3.8: An element of SC2({a, b}, {x, y}).

Remark 3.5.12. Again, we are looking at unital operads: SCn(∅,∅) is a singleton. Moreover, SCn(∅, S)
is nonempty for all S, i.e., SCn encodes operations of the form A×S → B for an algebra (A, B).

* * *
Recall (Th. 3.2.13) that an algebra over H∗(Dn) (for n ≥ 2) is an n-Poisson algebra, while an
H∗(D1)-algebra is an associative algebra.

Definition 3.5.13. The center of an H∗(Dn)-algebra is the commutative algebra:

(3.5.14) Z(A) := {a ∈ A | ∀b ∈ A, [a, b] = 0},

where [a, b] is either the n-Lie bracket of a and b (for n ≥ 2) or the commutator of a and b (for n = 1).
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Theorem 3.5.15 (Consequence of Voronov [167, Thm. 3.3], noted in Hoefel–Livernet [93, Thm. 6.1.1]).
Let n ≥ 2. An algebra over SCn is a triple (A, B, f) where:

• A is an H∗(Dn)-algebra;
• B is an H∗(Dn−1)-algebra;
• f : A→ Z(B) is a central morphism of commutative algebras.

There is also an analogue of the recognition principle.

Definition 3.5.16. Let x0 ∈ A ⊆ X be a pair of based spaces and let n ≥ 1. The n-fold iterated
relative loop space of (X, A) is the space:

(3.5.17) Ωn(X, A) :=
{

γ : [0, 1]→ X

∣∣∣∣∣ γ
(
[0, 1]× {0}n−1) ⊆ A,

γ
(
∂[0, 1]n ∩ (0, 1]× [0, 1]n

)
= {x0}

}
.

Remark 3.5.18. The space Ωn(X, A) is the homotopy fiber of the inclusion Ωn−1A→ Ωn−1X.

Theorem 3.5.19 (Hoefel–Livernet–Stasheff [94] for n = 1, Vieira [165] for n ≥ 3). Let n = 1 or
n ≥ 3. Let (Y, B) be an SCn-algebra. Suppose either that Y is a group-like D1-algebra (for n = 1) or
that Y is (n− 1)-connected and B is (n− 2)-connected (for n ≥ 3). Then there exists a pair of based
spaces (X, A) and a zigzag of weak equivalence of SCn-algebras (Y, B) ≃ (ΩnX, Ωn(X, A)).

* * *
The following result explains why we wrote that results about SCn are “purely operadic in nature.”
From a topological point of view, the homotopy types of the components of SCn are completely
determined by what happens to Dn:

Proposition 3.5.20. For all n ≥ 1 and U, S finite sets, there is a homotopy equivalence:

(3.5.21) SCn(U, S) ≃ Dn−1(U)× Dn(S) ≃ ConfRn−1(U)× ConfRn(S).

Since all the components of SCn are formal, and its structure maps are restriction of formal maps,
one could potentially expect that SCn is itself formal. This was shown to be false for n ≥ 2 (the case
n = 1 is trivial):

Theorem 3.5.22 (Livernet [115] and Willwacher [170]). The operad SCn is not formal over any field
for n ≥ 2.

The approach of Livernet [115] is based on the theory of operadic Massey products, which are
generalizations of classical Massey products for dg-algebras. The proof of Willwacher [170] reduces
the (non)-formality of SCn to the (non)-formality of the inclusion of operads Dn−1 ↪→ Dn, which was
shown to be non-formal by Turchin–Willwacher [162].

Both proofs, however, crucially use elements in SCn(∅, {∗}). Voronov’s original definition of the
Swiss-Cheese operad actually did not allow such elements. The operad considered in [167] is a
sub-operad SCvor

n ⊆ SCn defined by:

(3.5.23) SCvor
n (U, S) :=

{
SCn(U, S), if U ̸= ∅;
∅, if U = ∅.

Formality of SCn would have implied formality of SCvor
n , but Th. 3.5.22 does not imply that SCvor

n is
non-formal. This question is now settled, by Vieira [164] and in joint work with Vieira:

Theorem 3.5.24 (Vieira [164] for n = 2, [9] for all n). Voronov’s Swiss-Cheese operad SCvor
n is not

formal for any n ≥ 2.
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The proof of this theorem is inspired by the construction of the nontrivial Massey product in [115]
for n = 2 (which is not exactly analogous to the one for n ≥ 3). Consider the following elements
(which are part of a set of generators of H∗(SC2)):

(3.5.25) µ =
− +

, f =
∗

.

Then there is a homotopy η1 from µ ◦− f and (µ · τ) ◦− f (where τ : {±} → {±} is the transposition)
given by letting the disk go “above” the half-disk:

(3.5.26) ∗ +
⇝

+

∗

⇝
+ ∗

This proves that ⟨µ+µ ·τ ; f, f⟩ defines a Massey product: one has (µ+µ ·τ)◦+ f = (µ+µ ·τ) ·− f = 0
thanks to the homotopy η. Computing this Massey product gives f ◦ λ, where λ ∈ H1(D2(2)) is a
generator. This element is not in the ideal generated by µ on the left and f on the right, so this is a
nonzero Massey product and thus an obstruction to formality.

This proof cannot work for SCvor
2 , as it uses the element f ∈ SC2(∅, 1). Vieira [164] found another

nonzero Massey product in SCvor
2 . The construction of half of the Massey product is summarized by

Fig. 3.9; note that it is more convenient to work with little cubes rather than little disks for these
constructions.

Figure 3.9: Half of the Massey product in SCvor
2 . Reproduced from [9].

This construction was generalized in [9] in joint work with Vieira. While the construction for
SCvor

2 only uses operations of arity (2, 2) at most, the one for SCvor
n ends up using operations of arity

(2n, 2). Moreover, the construction for SCvor
2 is obtained by gluing only 8 “basic” paths (obtained by

composing elementary paths together); the construction for SCvor
n uses, in total, 2n+1 such elementary

paths. We refer to Fig. 3.10 for an illustration of 1/16th of the Massey product in SCvor
3 .

One interesting note we have is that the obstruction to formality is not an operadic Massey product,
strictly speaking. The issue lies in the action of the symmetric group: the permutation of the two
open colors occurs after all the compositions have been performed.

Question 3.5.27. Can we give a more general definition of an operadic “Massey-like product” that
covers the obstruction to the formality of SCvor

n found in [9]?

We are also lead to the following natural question: what is the largest arity up to which SCvor
n is

formal? More precisely,

Definition 3.5.28. For r ≥ 0, let FB≤r be the category of sets of cardinality ≤ r and bijections. An
r-truncated symmetric collection is a functor on FBop

≤r. For r, s ≥ 0, an (r, s)-truncated bisymmetric
collection is a bifunctor on FBop

≤r × FBop
≤s.
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Figure 3.10: One sixteenth of the Massey product in SCvor
3 . Reproduced from [9].
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Definition 3.5.29. For r ≥ 0, an r-truncated operad is an r-truncated symmetric collection P
equipped with structure maps ◦W : P(U/W ) ⊗ P(W ) → P(U) for #U, #W, #(U/W ) ≤ r, as well
as a unit if r ≥ 1, satisfying the same axioms as operads (when arities make sense). Truncated
(bi)-modules and truncated relative operads are defined analogously.

Remark 3.5.30. Truncated operads and modules appear in the computation of finite degree polynomial
approximations in embedding calculus (see Sec. 2.4).
Remark 3.5.31. An operad (resp., module, bimodule, relative operad) defines a truncated operad
(resp., module, bimodule, relative operad) by restriction.

Of course, if an operad is formal, then its truncation to any arity is formal. The converse is of
course not true. For example, the little disks operads Dn are clearly not formal over a field of positive
characteristic: the action of Σp on Dn(p) is non-formal, even if we forget about the operadic structure.
Remark 3.5.32. Even if we forget the action of the symmetric group, it is known that D2 is not formal
over F2 [145].

Nevertheless, there are formality results for the truncations of Dn:

Theorem 3.5.33 (Cirici–Horel [41] for n = 2, Boavida de Brito–Horel [29] for n ≥ 3). The truncation
of the dg-operad C∗(Dn;Fp) to arity ≤ p− 1 is formal.

This thus raises the following question:

Question 3.5.34. What are the maximal couples (r, s) such that the (r, s)-truncation of SCvor
n is

formal (over Q or Fp)?

The author would be satisfied with any partial order on N2 to define “maximal,” e.g., either one of
the two lexicographic (total) orders, or the (partial) order induced by (r, s) 7→ r + s. This question is
subsumed by this more general question:

Question 3.5.35. What is the homotopy Hopf cooperad structure transferred onto H∗(SCn) or
H∗(SCvor

n )?

Indeed, once the transferred structure is computed, one could perhaps “see” that the obstruction to
the non-formality of SCvor

n is in higher arity than that of SCn. Conversely, if the transferred structure
is expressed in terms of integrals indexed by graphs using the results of Willwacher [169], this could
give a hint that some of these integrals vanish for low numbers of vertices.

* * *
Let us now discuss a formality result regarding another variant of the Swiss-Cheese operad. Philo-
sophically speaking, the Swiss-Cheese operad encodes actions of Dn-algebras on Dn−1-algebras via
central morphisms. The operad we introduce next encodes actions of Dn-algebras on Dm-algebras
(for 1 ≤ m < n) via central derivations. For convenience, we consider Dm ⊆ Dn as the intersection
Dn ∩ Rm × {0}.

Definition 3.5.36. Let 1 ≤ m < n be integers and U, V be finite sets. The space CDmn(U, V )
is the subspace of elements c ∈ Dn(U ⊔ V ) such that (i) for u ∈ U , c(0, u) ∈ Dm; for v ∈ V ,
im(c( , v)) ∩ Dm = ∅. The operad structure of Dn induces a relative Dn-operad structure on CDmn.

Roughly speaking, an element of CDmn(U, V ) is a configuration of little n-disks in the unit n-disk
of two kinds: (i) “terrestrial disks,” indexed by U and constrained to be centered on a point of Dm;
(ii) “aerial disks,” indexed by V and constrained to never touch Dm. This operad is equivalent to the
operad Diskfr

m⊆n that is useful in factorization homology to study knot complements [20, Sec. 4.3].
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Remark 3.5.37. This operad is not equivalent to the extended Swiss-Cheese operad ESCmn considered
by Willwacher [170]. He proved that formality of ESCmn is equivalent to the formality of the inclusion
Dm ⊆ Dn, which occurs if and only if n−m ̸= 1 by the results of Turchin–Willwacher [162].

Recall that an algebra over H∗(Dn) is an associative algebra for n = 1, or an n-Poisson algebra
when n ≥ 2 (Th. 3.2.13). The following computation is performed by adapting and extending the
methods of Cohen [42] and Hoefel–Livernet [93]:

Proposition 3.5.38 ([6]). An algebra over H∗(CDmn) is the data of:
• an H∗(Dn)-algebra A;
• an H∗(Dm)-algebra B;
• a central morphism f + δϵ : A→ B[ϵ], where B[ϵ] = B ⊕Bϵ, deg ϵ = n−m− 1, and with the

Lie bracket of degree n− 1:

(3.5.39) [x + yϵ, x′ + y′ϵ] := [x, x′] + ϵ
(
[x, y′]± [x′, y]

)
.

By adapting the template presented at the end of Sec. 3.4, we proved:

Theorem 3.5.40 ([6]). The operad CDmn is formal in characteristic zero.

Remark 3.5.41. Strictly speaking, in [6], we are proving that the Hopf cooperad Ω∗(CDmn)⊗Q R is
formal. It is known that formality over R descends to formality over Q for dg-operads, thanks to the
results of Guillén Santos–Navarro–Pascual–Roig [87]. Thus C∗(CDmn;Q) is also formal. We could not
find an answer to the following question in the literature, although a positive answer seems likely.

Question 3.5.42 (Asked on MO [96]). Does formality of (colored) Hopf cooperads satisfy the descent
property?

Let us conclude with a couple of questions. First, we wonder if the recognition principle (Th. 3.2.15,
3.5.19) generalizes to CDmn.

Conjecture 3.5.43. The operad CDmn recognizes pairs (Ωn(X), Ωm,n(A, X)), where (X, A, x0) is a
pair of based spaces (possibly under some connectivity assumptions), and

(3.5.44) Ωm,n(A, X) := {γ : Dn → X | γ(∂Dn) = {x0} and γ(Dm) ⊆ A}.

Note that this recognition principle is part of our motivation for considering CDmn rather than the
extended Swiss-Cheese operad ESCmn considered by Willwacher [170], as (ΩX, Ωm,n(A, X)) is not an
algebra over ESCmn in general.

Question 3.5.45. Is the operad CDmn intrinsically formal (in the sense of [72])? (The techniques
of [56] may prove useful.)

The operad CDmn is inspired by the theory of factorization algebras (see e.g., [81, 20, 48] and
Def. 4.3.30). More specifically, CDmn encodes locally constant prefactorization algebras on the
stratified space {Rm ⊆ Rn}.

Question 3.5.46. Let F be a stratification of Rn by (semi)-affine subspaces. Let DF be the topological
colored operad that encodes locally constant prefactorization algebras on that stratified space. When is
DF formal?

An obviously necessary condition is that F does not contain two strata Fi ⊂ Fj such that
dim Fj − dim Fi = 1; otherwise, DF would contain the (non-formal) Swiss-Cheese operad. It seems
doubtful that this condition is sufficient. The most basic nontrivial case to study would be, for integers
a, b, c, d ≥ 2, the space Ra+b+c+d stratified by its subspaces Ra+b × {0}c+d and {0}a × Rb+c × {0}d.
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4 Resolutions

In this last section, we explain what tools we use to perform concrete computations from the results
obtained in the previous sections. We first introduce the bar and cobar constructions, and explain
their relationship to the Boardman–Vogt W construction. We then briefly review Koszul duality,
its extension to operads, and our contribution to that. We then show an application to homotopy
prefactorization algebras.

4.1 Bar, cobar, and W constructions
The computation of homotopy invariants of algebraic objects often requires to find a resolution of these
objects, that is, a quasi-(co)free, weakly equivalent replacement of the initial object. Examples include
some invariants that already appeared in this memoir, e.g., Harrison cohomology of commutative
algebras to compute rational homotopy groups out of a Sullivan model, or (operadic) Massey products.
Other examples include various kinds of algebraic homology theories (Hochschild, Lie, Poisson. . . ), or
derived tensor products as appearing in e.g., factorization homology.

One key issue is to compute efficient resolutions, which are not too big but sufficiently well-behaved
so that applying a derived functor to that resolution gives a tractable answer. Indeed, it is generally
easy to define generic resolutions, which tend to be large.

* * *
One example of canonical resolution is the bar-cobar resolution of an associative algebra. Recall
(Sec. 1.2) that we always use a cohomological grading, and that the shift of a graded vector space is
defined by (V [i])k = V k+i. We will just write “algebra” or “coalgebra” instead of “dg-algebra” or
“dg-coalgebra.”

Notation 4.1.1. Let V be a graded vector space. The free algebra on V is denoted by T (V ). The
cofree conilpotent coalgebra on V is denoted T c(V ).

Definition 4.1.2. An augmented algebra is an algebra A equipped with a morphism εA : A → K.
Its augmentation ideal is denoted Ā = ker(εA). A coaugmented coalgebra is a coalgebra C equipped
with a morphism ηC : K→ C. Its coaugmentation coideal is C̄ = coker(ηC).

Definition 4.1.3. Let A be an augmented algebra. The bar construction BA of A is:

(4.1.4) BA :=
(
T c(Ā[1]), dB

)
,

where dB is the unique coderivation whose projection onto cogenerators is a 7→ da, a⊗ b 7→ ab, and
zero on tensors of length ≥ 3.

Definition 4.1.5. Let C be a coaugmented coalgebra. The cobar construction ΩC of C is:

(4.1.6) ΩC :=
(
T (C̄[−1]), dΩ

)
,

where dΩ is the unique derivation whose restriction to generators is c 7→ dc + ∆(c).

Theorem 4.1.7. Let A be an augmented algebra. The natural morphism of algebras ΩBA→ A, given
on generators by the projection BA→ Ā[1], is a resolution of A.
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This resolution is always well-defined and functorial. However, it is very large in general:
Example 4.1.8. Let An = T (Vn) where dim Vn = n is concentrated in degree zero. Let A

(k)
n ⊆ A be

the subspace of elements of weight k, that is, linear combinations of products of k generators; then
dim A

(k)
n = nk. If we let (ΩBAn)(k) ⊆ ΩBAn be the subspace of elements of weight k (that is, the

total number of elements of Vn involved is k, no matter the degree), then dim(ΩBAn)(k) = 3k−1nk is
much larger than dim A

(k)
n , even though An is already a resolution of itself.

There exists a different bar construction, which is a special case of the two-sided bar construction.

Definition 4.1.9. Let A be an algebra, M be a right A-module, and N be a left A-module. The
two-sided bar construction B(M, A, N) is the chain complex:

(4.1.10) B(M, A, N) :=
(⊕

n≥0
M ⊗ (A[1])⊗n ⊗N, d

)
,

where d : M ⊗ (A[1])⊗n ⊗N →M ⊗ (A[1])⊗(n−1) ⊗N is given by the signed sum ∑n
i=0(−1)idi, and,

for a0 ∈M , an+1 ∈ N , and a1, . . . , an ∈ A:

(4.1.11) di(a0 ⊗ · · · ⊗ an+1) := (−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1.

Note that d0 uses the module structure of M , dn uses the module structure of N , and di (0 < i < n)
uses the algebra structure of A.

The two-sided cobar construction Ω(M, C, N), for a coalgebra C, a right C-comodule M , and a left
C-comodule N , is defined analogously.

Definition 4.1.12. Let A be an augmented algebra, so that K is naturally an (A, A)-bimodule. The
reduced bar construction of A is the chain complex:

(4.1.13) B′A := B(K, A,K) =
(⊕

n≥0
(A[1])⊗n, d

)
.

* * *
Generalizations of the bar and cobar constructions for (algebraic) operads exist. However, there are
several such generalizations, depending on how one views operads. Livernet [114] summarizes two
constructions, one by Ginzburg–Kapranov [82], the other by Rezk [140], Shnider–Van Osdol [153],
and Fresse [64], who were proved to be equivalent by Fresse [64]; and constructs a third one denoted
B, and proves that it is equivalent to the other two using a levelization morphism. We will focus on
the first two constructions.

The first point of view is to see an operad as a monoid for the plethysm (Rem. 3.1.20). Let P be an
operad. Recall from Rem. 3.1.35 that an operadic right P-module can be viewed as a right module (in
the classical sense) over P seen as a monoid in the category of symmetric collections. That is, a right
P-module is a symmetric collection M endowed with a structure map M ◦ P→ M (where ◦ stands for
the plethysm (3.1.22)) satisfying certain associativity axioms. Dually, a left P-module (Def. 3.1.41) is
a symmetric collection N endowed with a structure map P ◦ N → N satisfying some axioms. This
yields the following construction [140, 153, 64].

Definition 4.1.14. Let P be an operad, M be a right P-module, and N be a left P-module. The
two-sided bar construction B(M, P, N) is given by the direct sum:

(4.1.15) B(M, P, N) :=
(⊕

n≥0
M ◦ (P[1])◦n ◦ N, d

)
,

where d is defined analogously to the one in Def. 4.1.9.
The two-sided cobar construction Ω(M, C, N), for a coalgebra C, a right C-comodule M, and a left

C-comodule N, is defined analogously
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Remark 4.1.16. Strictly speaking, a cooperad is not a comonoid for the plethysm (Eq. (3.1.22)) but
rather for the restricted plethysm, which is defined by an end rather than a coend:

(4.1.17) (C ◦̃D)(U) :=
∫

V ∈FB

(
C(V )⊗

( ⊕
f : U→V

⊗
v∈V

D(f−1(v))
))

.

In characteristic zero, plethysm and restricted plethysm are isomorphic. Since we mostly work in
characteristic zero, we will remain imprecise.

Definition 4.1.18. Let P be an augmented operad, so that I naturally forms a (P, P)-bimodule. The
leveled bar construction of P is:

(4.1.19) B◦P := B(I, P, I) =
(⊕

n≥0
(P[1])◦n, d

)
.

An element of (B◦P)(U) can be viewed as a rooted tree with levels whose vertices are decorated by
elements of P (with the appropriate arity) and whose leaves are in bijection with U . See Fig. 4.1 for
an example. The differential is the signed sum of the “contraction” of two consecutive levels. Note
that B◦P does not naturally define a cooperad.

p

q

r1

1 3

r2

2 4 6

id

r3

5 7

(a) An element of B◦P(7).

p

q

r

1 6

s

2 4 5

3

(b) An element of BP(5).

Figure 4.1: Elements of the two bar constructions for an operad P.

The other bar construction BP is built differently, as we now explain.

Notation 4.1.20. The free operad on a symmetric sequence V is denoted T (V). The cofree
(conilpotent) cooperad on V is denoted T c(V).

Definition 4.1.21. The bar construction BP of an augmented operad P is the cofree cooperad on
the suspension of the augmentation ideal of P:

(4.1.22) BP :=
(
T c(P̄[1]), d

)
,

with the differential d being the unique coderivation whose projection on cogenerators maps a tree
with two vertices of the form [p] ◦i [q] to [p ◦i q], and vanishes on other trees. The cobar construction
ΩC of a cooperad is defined analogously.

The main advantage of BP over B◦P is that it actually defines a cooperad.

Theorem 4.1.23. For an operad P, the natural morphism ΩBP → P, given on generators by the
projection BP↠ P̄[1], is a quasi-isomorphism.

Just like the bar-cobar resolution of an algebra, this resolution is often wasteful.
Remark 4.1.24. If P is an augmented operad concentrated in arity 1, i.e., an augmented algebra, then
BP coincides with the bar construction for algebras, and ΩBP coincides with the bar-cobar resolution
for algebras.
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* * *
In [1], with Campos and Ducoulombier, we study the bar and cobar constructions for Hopf cooperads
and comodules (Def. 3.3.3). One of our primary goals is to define fibrant resolutions for cobimodules.
Remark 4.1.25. In [1], we also study the case of operads and bimodules in spectra, where the bar
construction was defined by Salvatore [143] and Ching [36]. For brevity, we will only discuss the dual
case of Hopf cooperads and cobimodules here, but all the results below have dual results.

Given cooperads C, D and a (C, D)-cobimodule M, one could be tempted to define a fibrant resolution
by:

(4.1.26) Ω(C, C, M) ◦M Ω(M, D, D) := eq
(
Ω(C, C, M) ◦ Ω(M, D, D)⇒ Ω(C, C, M) ◦M ◦ Ω(M, D, D)

)
.

However, this does not define a cobimodule, in general. The issue lies in the “levels” in the two-sided
cobar constructions (cf. Fig. 4.1). Because of these levels, the natural candidate for the cocomposition
does not satisfy the associativity axioms required of cooperads and cobimodules. Depending on the
order in which cocomposition is performed, the same node of a tree could land in different levels.

It is easy to adapt Def. 4.1.21, which uses the definition of operads with partial compositions,
to define a fibrant resolution of a right comodule over a cooperad. One should simply replace the
decoration of the root with a decoration from the considered comodule in the definition of the cobar
construction. Everything then falls into place, because a right comodule can equivalently be defined
in terms of total cocomposition or partial cocomposition. The crux of the issue is in the left comodule
structure; total cocomposition and partial cocomposition define different structures.

To alleviate this issue, we define in [1] a leveled cobar construction for 1-reduced cooperads and
cobimodules (where 1-reduced means that arity zero contains just a point and arity one just the
identity). This construction uses leveled trees, just like the two-sided cobar construction. However,
we also allow some levels to be permuted (or rather, we consider linear combinations of trees invariant
under permutation of some levels). Two consecutive levels are called “permutable” if every edge
between the two has either a bivalent source or a bivalent target, see Fig. 4.2.
Remark 4.1.27. In our definition of 1-reduced, the component of arity zero is a point (or one-
dimensional). Whenever we speak of (co)fibrant resolutions below, we place ourselves in the Reedy
model structure [68].
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1
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s

3 4

id

id

5

Figure 4.2: Permutable levels. Levels (2,3) are permutable in the first tree to get the second one.
Levels (3,4) are not permutable in the first tree, but become permutable in the second.

Theorem 4.1.28 ([1]). The leveled (co)bar constructions give functors:

(4.1.29) Ωl : {1-red. dg-coop.}⇆ {1-red. dg-op.} : Bl,

which are isomorphic to the usual (co)bar constructions. Moreover, if P, Q are dg-(co)operads and M is
a (P, Q)-(co)bimodule, then the leveled two-sided (co)bar construction Bl(P, M, Q) (resp., Ωl(P, M, Q))
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is a well-defined dg-(BlP, BlQ)-cobimodule (resp., dg-(ΩlP, ΩlQ)-bimodule). The bar-cobar construction
of a bimodule is a cofibrant resolution (in the category of bimodules over the bar-cobar constructions
of the relevant operads) of the original bimodule.

* * *
Finally, in [1], we consider another type of resolution, the Boardman–Vogt W construction. It is
easiest to explain this construction for topological operads, which we do now. Let I = [0, 1] denote
the unit interval.

Definition 4.1.30. Let P be a topological operad. The Boardman–Vogt construction of P, denoted
WP, is the operad defined as follows. Let Tr be the set of rooted planar trees with r numbered leaves.
For T ∈ Tr, let WP(T ) be the space consisting of decorations of T , where internal vertices of arity
i ∈ N are decorated by elements of P(i), and inner edges are decorated by elements of I. We then set
WP(r) =

(⊔
T ∈Tr

WP(T )
)
/∼. The equivalence relation ∼ is generated by the following relations, for

T ∈ Tr and x ∈ WP(T ) (see Fig. 4.3):
• if the decoration of an inner edge e is zero, then let T/e be the tree obtained from T by

contracting e, let p, q be the decorations of the endpoints of e, and let x′ ∈ WP(T/e) be the
decoration defined like x, except the vertex that used to be e before the contraction is now
decorated by p ◦i q (where i is the number of e in the children of the vertex decorated by p);
then we have x ∼ x′;

• if the decoration of an internal vertex v is idP ∈ P(1), then let T \ v be the tree obtained from T ′

by erasing v (which is bivalent), and let x′ ∈ WP(T \ v) be defined like x, except the decoration
of the new edge is s + t− st, where s, t ∈ I were the decorations of the edges incident to v; then
we have x ∼ x′.

The operad structure is defined by tree grafting, with new edges decorated by 1 ∈ I.

p

1 q

4 2

0
3 5

∼ p ◦2 q

1 4 2 3 5

, p

1 id

q

4 2

t

s

3 5

∼ p

1 q

4 2

s ⋆ t

3 5

.

Figure 4.3: Identifications in the Boardman–Vogt W construction, where p ∈ P(4), q ∈ P(2), s, t ∈ I,
and s ⋆ t = s + t− st.

Remark 4.1.31. The W construction is, of course, connected to the story of configuration spaces. Let
us mention for example the result of Salvatore [146], who proved that WFMnu

n = FMnu
n , where FMnu

n

is the sub-operad of the Fulton–MacPherson operad FMn (Def. 3.4.18) obtained by removing the
operation of arity zero. In the presence of this operation of arity zero, FMn is no longer cofibrant, but
an explicit cofibrant replacement can be found in, e.g., [161].

This construction defines a cofibrant resolution [166] (in a suitable model structure on reduced
operads, see [24]). It was extended to any category equipped with a suitable interval object by
Berger–Moerdijk [25]. Ching [36, 37] studied these constructions in the case of the category of spectra.
The construction was modified to deal with Hopf cooperads by Fresse–Turchin–Willwacher [70].

In [1], we define a leveled version of the W-construction, and extend to (co)bimodules. As above,
we only state the result for Hopf cooperads and cobimodules.
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Theorem 4.1.32 ([1]). Let C be a 1-reduced Hopf cooperad. The leveled Boardman–Vogt construction
WlC is a fibrant resolution of C which is isomorphic to the usual Boardman–Vogt construction.

Moreover, if C, D are 1-reduced Hopf cooperads and M is a 1-reduced (C, D)-cobimodule, then the
leveled bar construction WlM is a fibrant resolution of M as a Hopf (WlC, WlD)-cobimodule.

Finally, we identify the primitive elements of the W-construction. Intuitively, these elements are
the ones where the decorations of the edges are not equal to 1 (although a little care is needed to
properly define it, as we work with an interval object, not an actual interval).

Theorem 4.1.33 ([1]). Let C be a 1-reduced Hopf cooperad. The subspace of primitive elements
Prim WlC forms a 1-reduced dg-operad which, and WlC is quasi-isomorphic to the bar construction on
the suspension of that dg-operad.

Moreover, if C, D are 1-reduced Hopf cooperads and M is a 1-reduced (C, D)-cobimodule, the primitive
subspace Prim WlM forms a 1-reduced dg-bimodule over (Prim WlC, Prim WlD), and WlM is isomorphic
to the bar construction on the suspension of that bimodule.

4.2 Koszul duality
Knowing something about an algebra (or an operad) often enables one to produce a resolution much
more efficiently than the bar-cobar resolution. One particularly useful example is Koszul duality.
Initially developed by Priddy [137] for inhomogeneous quadratic algebras, Koszul duality has since
proved to be useful in a number of settings, including (without pretension of being exhaustive): in
the curved algebraic setting [135, 133], for quadratic operads ([82, 79] for binary ones, [78] in general),
inhomogeneous quadratic operads [77], for properads [163], in the curved (pr)operadic setting [91, 92],
for quadratic algebras over certain operads [129], in the curved setting [7], etc.

As is evident from this list, the study of Koszul duality is quite fruitful. The development of
operadic Koszul duality greatly renewed interest for the theory of operads in the 1990’s, see [116]. In
this section, we will only review the very basics of Koszul duality. We then present our contribution
to curved Koszul duality for algebras over binary operads [7].

Definition 4.2.1. A quadratic algebra is an algebra of the form A = T (V, R) := T (V )/(R), where V
is a graded vector space and R ⊆ V ⊗ V is a set of monomials of weight 2 generating an ideal (R).

Remark 4.2.2. A quadratic algebra T (V, R) is a initial among algebra equipped with a morphism
from T (V ) which vanishes on R.

Definition 4.2.3. A quadratic coalgebra is a coalgebra of the form T c(V, R), where V is a graded
vector space, R ⊆ V ⊗ V , and T c(V, R) is universal among sub-coalgebras C ↪→ T c(V ) such that the
composite C ↪→ T c(V )→ (V ⊗ V )/R vanishes.

While this definition is dual to that of quadratic algebras, intuition is often sharper for algebras
than for coalgebras, so let us briefly illustrate how quadratic coalgebras work.

Proposition 4.2.4. Let V, R be as above. The coalgebra T c(V, R) decomposes as
⊕

n≥0 T c(V, R)(n),
where:

(4.2.5) T c(V, R)(n) =
⋂

i+j+2=n

V ⊗i ⊗R⊗ V ⊗j ⊆ V ⊗n,

with the conventions that T c(V, R)(0) = K and T c(V, R)(1) = V .

Remark 4.2.6. This echoes the classical fact that T (V, R) = ⊕
n≥0 T (V, R)(n), where

(4.2.7) T (V, R)(n) = V ⊗n/
∑

i+j+2=n

V ⊗i ⊗R⊗ V ⊗j .

47



Najib Idrissi Habilitation à Diriger des Recherches

Example 4.2.8. Let V = ⟨x, y, z⟩ be a vector space of dimension 3 concentrated in degree 0. Let
R ⊆ V ⊗ V be spanned by xy − yx, xz − zx, yz − zy (we omit tensors for brevity). Clearly, the
quadratic algebra T (V, R) is isomorphic to the polynomial algebra S(V ) = K[x, y, z].

On the coalgebra side, we have T c(V, R)(0) = K, T c(V, R)(1) = V , and T c(V, R)(2) = R. In weight 3,
we look for tensors that can be written at the same time r⊗ v and w⊗ s, for v, w ∈ V and r, s ∈ R. A
little linear algebra shows that solutions are multiples of xyz−xzy−yxz +yzx+zxy−zyx. Moreover,
T c(V, R)(n) = 0 for n ≥ 4. We obtain that T c(V, R) = Λc(V ) is the exterior coalgebra on V .
Example 4.2.9. Let V = ⟨x, y, z⟩ and R be spanned by xx, yy, zz, xy + yx, xz + zx, and yz + zy.
Then T (V, R) = Λ(V ) is the exterior algebra on V , while T c(V, R) is the polynomial coalgebra Sc(V ).

Definition 4.2.10. Let A = T (V, R) be a quadratic algebra. The Koszul dual coalgebra is:

(4.2.11) A¡ := T c(V [1], R[2])

The Koszul dual algebra of a quadratic coalgebra C = T c(V, R) is:

(4.2.12) C ¡ := T (V [−1], R[−2]).

Remark 4.2.13. Clearly, (A¡)¡ = A for any quadratic presentation of A.
Remark 4.2.14. It is often easier to think about the Koszul dual algebra of a quadratic algebra A:

(4.2.15) A! := T (V ∨, R⊥),

where V ∨ is the linear (graded) dual of V and R⊥ ⊆ V ∨ ⊗ V ∨ is the annihilator of R. Note that
(A!)(n) = ((A¡)(n))∨[−n] and that (A!)! = A if V is finite dimensional.
Example 4.2.16. If A = T (V ) is free then A! = K ⊕ V is the trivial algebra. If A = S(V ) is the
(graded commutative) polynomial algebra on V , then A! = Λ(V ∗) is the (graded skew-commutative)
exterior algebra on V .
Remark 4.2.17. For a quadratic algebra A, the Koszul dual A¡ equipped with the zero differential is a
sub-dg-coalgebra of BA.

Definition 4.2.18. Let A = T (V, R) be a quadratic algebra. Let κ be the linear map defined by:

(4.2.19) κ : A¡[1]↠ V ↪→ A.

There is a morphism of algebras fκ : ΩA¡ → A given on generators by κ.

Definition 4.2.20. A quadratic algebra A is Koszul if fκ is a quasi-isomorphism.

Remark 4.2.21. This definition seems to depend on the choice of quadratic presentation. However,
there exist intrinsic definitions of the Koszul property. One can for example ask for the Ext-algebra
ExtA(K,K) (with the Yoneda product) to be generated by its elements of weight one [118, 74].
Remark 4.2.22. For a quadratic algebra A = T (V, R), the (right) Koszul complex of A is the dg-module
given by:

(4.2.23) K(A) = (A⊗A¡, d), d : A⊗A¡ 1⊗∆−−−→ A⊗A¡ ⊗A¡ 1⊗κ⊗1−−−−→ A⊗A⊗A¡ µ⊗1−−→ A⊗A¡.

The algebra A is Koszul if and only if the Koszul complex of A is acyclic.
Remark 4.2.24. If a quadratic algebra A is Koszul, then so is A!.
Example 4.2.25. Free algebras, symmetric algebras, and exterior algebras are Koszul.
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* * *
The above version of Koszul duality only applies to quadratic algebras. However, not all algebras
admit quadratic presentations.
Example 4.2.26. Any quadratic algebra admits an augmentation. This is not the case of the R-algebra
C = T (i)/(i2 + 1).
Example 4.2.27. The R-algebra A = T (x)/(x2 − x) is augmented but does not admit a quadratic
presentation.

Priddy [137] introduced Koszul duality for inhomogeneous quadratic algebras, in which relations
are allowed to contain linear terms (i.e., elements of the generating space V ). Positsel’skii [135] and
Polishchuk–Positselski [133] introduced curved Koszul duality to deal with presentations in which
relations can contain quadratic, linear, and constant terms. To avoid repeating ourselves, we will only
present this latter version of Koszul duality. See also [136] for a survey.

Definition 4.2.28. A quadratic-linear-constant (QLC) algebra is one of the form T (V, R) where V
is a graded vector space and R ⊆ V ⊗2 ⊕ V ⊕K. Such a presentation is called good if it satisfies:

1. the space of generators is minimal: R ∩ (V ⊕K) = 0;
2. the space of relations is maximal: if (R) ⊆ T (V ) is the two-sided ideal generated by R, then

(R) ∩ (V ⊗2 ⊕ V ⊕K) = R.
If R is contained in V ⊗2⊕V , then we will call such a presentation a quadratic-linear (QL) presentation.

Remark 4.2.29. Checking the second condition can be difficult. Consider A = T (x, y, z)/(xy−y, x2−z).
The obvious choice R = ⟨xy − y, x2 − z⟩ does not satisfy the second condition, as we have:

xy − zy = (xy − xxy) + (xxy − zy) = x(y − xy) + (xx− z)y ∈ (R) ∩ (V ⊗2 ⊕ V ⊕K).

In other words, we can deduce a new quadratic relations from the existing one (by going through
cubical monomials).
Example 4.2.30. Any A admits a good QLC presentation with V = A and R = ⟨a⊗ b− ab | a, b ∈ A⟩.

Definition 4.2.31. Let A = T (V, R) be an algebra equipped with a QLC presentation. The quadratic
part of A is the quadratic algebra qA = T (V, qR) where qR is the projection of R to V ⊗2.

Lemma 4.2.32. Let A = T (V, R) be an algebra equipped with a good QLC presentation. There exists
linear maps φ1 : qR→ V and φ0 : qR→ K such that R = {r + φ1(r) + φ0(r) | r ∈ qR}.

Definition 4.2.33. A curved dg-coalgebra is a triple (C, d, θ) where C is a coalgebra, d : C → C is a
coderivation of degree 1, and θ : C → K is a linear map of degree 2 called the curvature, satisfying
the equation d2 = (θ ⊗ 1 + 1⊗ θ)∆.

Remark 4.2.34. The coderivation d in the definition above may not be a differential. A sufficient
condition is θ = 0, in which case we may view (C, d) as a plain dg-coalgebra. It is not necessary,
though. For example, let C = F2⟨1, x⟩ with deg(x) = −2, ∆(x) = 1⊗ x + x⊗ 1, and θ(x) = 1.

Definition 4.2.35. Let A = T (V, R) be an algebra equipped with a good QLC presentation. The
Koszul dual of A is the curved dg-coalgebra A¡ = (qA¡, d, θ) where:

• the coderivation d is the unique one whose projection on cogenerators is:

(4.2.36) d|V [1] : qA¡ ↠ (qA¡)(2) = qR[2] φ1−→ V [2];

• the curvature is the composite:

(4.2.37) θ : qA¡ ↠ (qA¡)(2) = qR[2] φ0−→ K[2].
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Example 4.2.38. For the QL presentation of Ex. 4.2.30, the Koszul dual dg-coalgebra is the bar
construction.
Example 4.2.39. Let g be a Lie algebra. The universal enveloping algebra U(g) has a good QL
presentation:

(4.2.40) U(g) = T (g)/(x⊗ y − y ⊗ x− [x, y] | x, y ∈ g).

The quadratic part of U(g) is simply the symmetric algebra S(g). The Koszul dual of U(g) is
(Sc(g[−1]), d, θ = 0) where d is the coderivation given by:

(4.2.41) d(x1 . . . xn) =
n−1∑
i=1

(−1)i−1x1 . . . [xi, xi+1] . . . xn.

We thus recognize the Chevalley–Eilenberg complex CCE
∗ (g).

Definition 4.2.42. A semi-augmented dg-algebra is a dg-algebra (A, d) equipped with a linear map
ε : A→ K. Given such a semi-augmented dg-algebra, we let Ā = ker(ε).

The unit and the semi-augmentation define a linear isomorphism A ∼= Ā⊕K. We let d̄ : Ā→ Ā
and µ̄ : Ā ⊗ Ā → Ā be the linear maps deduced from the differential and the product of A (by
pre/post-composing with the injection/projection on the semi-augmentation kernel).

Definition 4.2.43. Let (C, d, θ) be a curved dg-coalgebra. The curved cobar construction of C is the
semi-augmented dg-algebra ΩC = (T (C[−1]), d0 + d1 + d2), where the summands of the differential
are given on generators by the following maps:

d0|C[−1] : C[−1] θ−→ K[1] ⊆ T (C[−1])[1];(4.2.44)

d1|C[−1] : C[−1] d−→ C ⊆ T (C[−1])[1];(4.2.45)

d2|C[−1] : C[−1] ∆−→ (C ⊗ C)[−1] ⊆ T (C[1])[1].(4.2.46)

The semi-augmentation ε : ΩC → K is the projection onto T (C[−1])(0) = K.

Remark 4.2.47. The curved cobar construction admits a right adjoint. The curved bar construction of
a semi-augmented dg-algebra (A, d, ε) is the curved dg-coalgebra BA = (T c(Ā[1]), d1 + d2, θ), where:

• the coderivations d1, d2 of T c(A[1]) are respectively given onto cogenerators by:

d2|Ā[1] : T c(Ā[1])↠ Ā[1]⊗ Ā[1] µ̄−→ Ā[1];(4.2.48)

d1|Ā[1] : T c(Ā[1])↠ Ā[1] d̄−→ Ā[1].(4.2.49)

• the curvature is defined by θ(a) = ε(da) on tensors of length 1, θ(a⊗ b) = ε(µ̄(a, b)) on tensors
of length 2, and θ vanishes on tensors of length ≥ 3.

Theorem 4.2.50. Let A = T (V, R) be an algebra equipped with a good QLC presentation. If qA is
Koszul, then the canonical morphism Ω(A¡)→ A is a quasi-isomorphism.

Remark 4.2.51. Unlike the quadratic case, the application of the previous theorem depends on
the chosen presentation. For the QL presentation of Ex. 4.2.30, the Koszul dual of A is the bar
construction, and ΩBA→ A is always a quasi-isomorphism.

* * *
As mentioned in the introduction of this section, Koszul duality of associative algebras generalizes to
operads [82, 79]. Recall that we denote the free operad (resp., cooperad) on a symmetric sequence E
by T (E) (resp., T c(E))
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Remark 4.2.52. The symmetric sequence T (E) (resp., T c(E)) decomposes as ⊕n≥0 T (E)(n) (resp.,⊕
n≥0 T c(E)(n)), where the superscript (n) indicates the weight, i.e., the number of (co)generators

(co)composed together.

Definition 4.2.53. A quadratic operad is one of the form P = T (E, R) := T (E)/(R), where E is a
symmetric sequence and R ⊆ T (E)(2) is a symmetric subsequence.

Remark 4.2.54. With the above notation, T (E, R) is initial among operads equipped with a morphism
from T (E) which vanishes on R.

Definition 4.2.55. A quadratic cooperad is one of the form C = T c(E, R), where E is a symmetric
sequence and R ⊆ T (E)(2) is a symmetric subsequence, and T c(E, R) is terminal among cooperads
equipped with a morphism to T c(E) whose postcomposition with the projection to T c(E)(2)/R vanishes.

Remark 4.2.56. Quadratic (co)operads admit explicit descriptions similar to that of quadratic
(co)algebras.
Example 4.2.57. The operads Ass, Com, and Poisn (which are the non-unital versions of the operads
introduced in Sec. 3) are all quadratic.

Definition 4.2.58. Let P = T (E, R) be a quadratic operad. The Koszul dual cooperad is:

(4.2.59) P¡ := T c(E[1], R[2]),

where degree shifts are performed arity-wise. The Koszul dual operad of a quadratic cooperad
C = T c(E, R) is:

(4.2.60) C¡ := T (E[−1], R[−2]).

Remark 4.2.61. Just like for algebras, it is often easier to think about the Koszul dual operad
P! := T (S−1E∨[1], R⊥) of a quadratic operad P = T (E, R), where E∨ is the arity-wise linear dual of E,
R⊥ is the annihilator of R, and for a symmetric sequence F and n ≥ 0, we have as a representation of
Σn:

(4.2.62) (S−1F)(n) := F(n)⊗Hom(K[−1]⊗n,K[−1]).

Example 4.2.63. We have that Ass! = Ass is auto-dual, Com! = Lie encodes Lie algebras, and
Pois!

n = S−nPoisn encodes Poisson n-algebras shifted by n− 1 (i.e., A[1− n] is a Pois!
n-algebra if and

only if A is a Poisn-algebra).
Remark 4.2.64. From the previous example, we can see that the operad H∗(Dn) is auto-dual up to
degree shifts [82]. This is also true at the chain level over the rationals [79] and over the integers [66].
At the level of spectra, full self-duality is established in [38] (see also earlier results [120, 19] for
categories of (co)algebras). Interestingly, the right module given by configuration spaces of a framed
manifold is also Koszul self-dual in some sense [122].

Definition 4.2.65. Let P be an operad and C be a cooperad. A twisting morphism α : C[1]→ P is a
morphism of symmetric collections of degree 1 satisfying the Maurer–Cartan equation ∂α + α ⋆ α = 0,
where ∂α = d ◦ α− α ◦ d and α ⋆ α is the convolution product [117, Sec. 6.4.2].

Remark 4.2.66. The Maurer–Cartan equation implies that fα : ΩC→ P defined on generators by α
preserves the differential.

Definition 4.2.67. Let P = T (E, R) be quadratic algebra. There is a canonical twisting morphism
κ : C→ P given by:

(4.2.68) κ : P¡[−1]↠ E ↪→ P.

This defines a canonical morphism of operads fκ : ΩP¡ → P.
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Definition 4.2.69. A quadratic operad P is Koszul if fκ is a quasi-isomorphism.

Example 4.2.70. The operads Ass, Com, Lie, Poisn are all Koszul.
Koszul duality of quadratic operads has been generalized greatly to cover the case of inhomogeneous

quadratic operads by Gálvez-Carrillo–Tonks–Vallette [77], and to the curved case by Hirsh–Millès
[91]. For the sake of brevity, we will not expand on these generalizations. Let us simply mention that
they have been used e.g., to produce a resolution of the BV operad [77] (i.e., the homology of the
framed little 2-disks operad, see Def. 3.2.25) and the operad encoding unital associative algebras [91].
See also [141] for the theory in the non-conilpotent completed setting.

* * *
Millès [129] developed a Koszul duality theory for certain types of algebras over quadratic Koszul
operads. This theory specializes to classical Koszul duality when applied to the operad Ass.

Definition 4.2.71. A symmetric sequence M is reduced if M(0) = 0.

Definition 4.2.72. Let P = T (E, R) be a quadratic reduced operad. A monogenic P-algebra is an
algebra of the form P(V, S) := P(V )/(S), where V is a graded vector space and S is a subspace of
E(V ).

Example 4.2.73. When P = Ass with the usual quadratic presentation, a monogenic algebra is the
same thing as a quadratic algebra.
Remark 4.2.74. The algebra P(V, S) is initial among algebras A equipped with a morphism from P(V )
which vanishes on E(S).

Definition 4.2.75. Let C = T c(E, R) be a quadratic reduced cooperad. A monogenic C-coalgebra
is an coalgebra of the form C(V, S), where C(V, S) is terminal among coalgebras equipped with a
morphism to C(V ) whose postcomposition with the projection to E(S) vanishes.

Recall the construction S−1 from Rem. 4.2.61.

Definition 4.2.76. Let A = P(V, S) be a monogenic algebra over a quadratic reduced operad
P = T (E, R). The Koszul dual of A is the monogenic S−1P¡-coalgebra given by A¡ = P¡(V, S[1])[−1].

The Koszul duality between P and P¡ defines a bar-cobar adjunction Ωκ ⊣ Bκ between the category
of P¡-coalgebras and P-algebras [79]. This specializes, when P = Ass, to a non-unital version of the
usual bar-cobar adjunction.

Proposition 4.2.77. Let P be a quadratic reduced operad and A be a monogenic P-algebra. There is
a canonical morphism of P-algebras fκ : ΩκA¡ → A.

Definition 4.2.78. With the previous notation, A is called Koszul if P is Koszul and fκ is a
quasi-isomorphism.

Remark 4.2.79. Millès [129, Th. 4.9] proves that, when P and A are concentrated in degree 0, A is
Koszul if and only if its associated Koszul complex (analogous to the one mentioned in Rem. 4.2.22)
is acyclic.

* * *
In [7], we combine the results and ideas of Millès [129] and Hirsh–Millès [91] to obtain a curved Koszul
duality theory for algebras over unital versions of binary quadratic operads.

Definition 4.2.80. Let P = T (E, R) be a binary (i.e., E(r) = 0 for r ̸= 2) quadratic operad. A unital
version of P is an operad of the form uP = T (E ⊕ , R ⊕ R′), where is a generator of arity 0 and
degree 0, and where:
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1. the additional relations R′ are quadratic-linear, i.e., R′ ⊆ T (E⊕K )(2) ⊕K id;
2. the presentation of uP satisfies conditions analogous to those of Def. 4.2.28;
3. the inclusion E ↪→ E ⊕K induces an injective morphism P ↪→ uP;
4. the quadratic part quP of P is isomorphic to the coproduct of operads P⊕K .

Until the end of the section, let us fix a binary quadratic operad P and a unital version uP (with
the above notation for the spaces of generators and relations), as well as a coaugmented conilpotent
cooperad C and a twisting morphism α : C→ P. We moreover assume that α is zero on C(r) for r ̸= 2.

Definition 4.2.81. Let C be a C-coalgebra and θ : C[2]→ K a map of degree 2. The α-star product
of θ is the map:

(4.2.82) ⋆α(θ) : C
∆−→ C(C) α◦′Θ−−−→ uP(uP(C)) γ−→ uP(C),

where ∆ is the structure map of C, γ is the structure map of the free uP-algebra uP(C), Θ is the
composite of θ and the inclusion of K = K in uP(C), and:
(4.2.83)

∀c ∈ C(r), ∀ci ∈ C, (α ◦′ Θ)
(
x(c1, . . . , cr)

)
:=

n∑
i=1

(−1)i−1α(x)
(
c1, . . . , ci−1, Θ(ci), ci+1 . . . , cr

)
.

Remark 4.2.84. Thanks to our hypotheses on uP and α, the image of ⋆α(θ) is actually contained in
C ⊆ uP(C).

Definition 4.2.85. An α-curved C-coalgebra is a triple (C, d, θ) where C is a C-coalgebra, d : C → C
is a derivation of degree 1, θ : C → K is a map of degree 2, satisfying the two equations:

(4.2.86) d2 = ⋆α(θ), θ ◦ d = 0.

Example 4.2.87. Let P = Ass, uP be the operad encoding unital algebras, C = Ass¡, and κ : C→ P the
Koszul twisting morphism. Then a κ-curved C-coalgebra is a (shifted) coalgebra C endowed with a
coderivation d and a linear map θ : C → K of degree 2 satisfying θd = 0 and:

(4.2.88) d2 = (θ ⊗ id− id⊗θ)∆.

We recognize the dual of the usual notion of curved dg-algebra [135].

Definition 4.2.89 (Cf. Def. 4.2.42). A semi-augmented uP-algebra is a uP-algebra A endowed with
a linear map ε : A→ K.

Proposition 4.2.90 ([7, Prop. 2.14]). There is a bar-cobar adjunction Ωα ⊣ Bα between the category
of α-curved C-coalgebras and the category of semi-augmented uP-algebras.

Definition 4.2.91. A uP-algebra with QLC relations is a uP-algebra of the form (A = uP(V )/I, d = 0)
where:

• the ideal I is generated by S = I ∩ (K ⊕ V ⊕ E(V ));
• the generating relations all contain quadratic terms, i.e., S ∩

(
K ⊕ V

)
= 0.

Definition 4.2.92. Let A = uP(V )/(S) be a uP-algebra with QLC relations. Its quadratic part is
the P-algebra qA := P(V )/(qS), where qS is the projection of S to E(V ).

Remark 4.2.93. Note that qA is a monogenic algebra (Def. 4.2.72).
Remark 4.2.94. Thanks to the hypotheses on the presentation, there exist linear maps φ1 : qS → V
and φ0 : qS → K such that S = {x + φ1(x) + φ0(x) | x ∈ qS}.
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Definition 4.2.95. Let A = uP(V )/(S) be a uP-algebra with QLC relations. The Koszul dual of A
is the α-curved C-coalgebra (qA¡, d, θ), where qA¡ is the Koszul dual of qA in the sense of Def. 4.2.76,
the coderivation d is the unique coderivation whose projection to cogenerators is qA¡ ↠ qS

φ1−→ V ,
and θ : qA¡ ↠ qS

φ0−→ K .

There is a canonical morphism of uP-algebras fκ : ΩκqA¡ → A.

Definition 4.2.96. Let A = uP(V )/(S) be a uP-algebra with QLC relations. It is called Koszul if fκ
is a quasi-isomorphism.

Theorem 4.2.97 ([7]). With the above notation, A is Koszul if and only if qA is Koszul in the sense
of [129].

Question 4.2.98. Can the previous theory be adapted to the case where P is not binary?

4.3 Applications
To perform the computations of Ex. 2.4.36, we used a particular nice kind of basis for quadratic
algebras: a Poincaré–Birkhoff–Witt (PBW) basis. The existence of such a basis can be used to prove
that a quadratic algebra is Koszul. Let us now briefly explain what these bases are and give an
example; we refer to [137, 133, 117] for details.

In what follows, let us fix a vector space V with a totally ordered finite basis (v1, . . . , vk), and a
quadratic algebra A = T (V, R) for R ⊆ V ⊗ V . Let us also write I = {1, . . . , k} for the set of indices
of the basis of V .

Definition 4.3.1. We let I∗ := ⊔
n≥0 In be the set of multi-indices in I, equipped with the lexicographic

order (also known as dictionary order).

Lemma 4.3.2. The free algebra T (V ) admits a totally ordered basis (vı̄)i∈I∗, where:

(4.3.3) ∀ı̄ = (i1, . . . , in) ∈ I∗, vı̄ := vi1 . . . vin .

Definition 4.3.4. Let o : N→ I∗ be the unique increasing bijection. For p ∈ N, let FpA ⊆ A be the
subspace of A spanned by {vo(k) | k ≤ p}. The associated graded algebra gr A is the one associated to
the increasing filtration F•A, that is,

(4.3.5) gr A :=
⊕
p∈N

FpA/Fp−1A.

Definition 4.3.6. The leading space of relations Rlead is the kernel of the morphism of algebras
T (V )→ gr A which sends a generator to its class in gr A.

Concretely, an element of r ∈ R can always be written (up to a scalar) as:

(4.3.7) r = vivj −
∑

(k,l)<(i,j)∈I∗

λk,lvkvl.

The summand vivj is called the leading term of the relator r. The space Rlead ⊆ V ⊗ V is spanned by
the leading terms of the relators.

Definition 4.3.8. Let L̄(2) ⊆ I2 be the set of multi-indices that appear in Rlead. Let L(2) := I2 \ L̄(2)

be its complement. Let L = ⊔
n≥0 L(n) and L̄ = ⊔

n≥0 L̄(n), where:

(4.3.9)
L(n) = {(i1, . . . , in) ∈ In | ∀1 ≤ k < n, (ik, ik+1) ∈ L(2)};
L̄(n) = {(i1, . . . , in) ∈ In | ∀1 ≤ k < n, (ik, ik+1) ∈ L̄(2)}.
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Remark 4.3.10. The above conditions are vacuous when n ≤ 1, so that L(0) = L̄(0) = I0 = {∗} and
L(1) = L̄(1) = I = {1, . . . , k}.

Let us now explain the idea behind these definitions. Let r be a relator as in Equation (4.3.7).
Intuitively, we can “rewrite” the term vivj (indexed by an element of L̄) into a sum of terms indexed
by smaller multi-indices. Since we mod out by the ideal generated by R, this is true of any monomial
that contains vivj . We can then repeat this process iteratively to end up with a sum of monomials
that do not contain any leading term, i.e., monomials indexed by elements of L. By induction, this
process (or its dual for the Koszul dual coalgebra) proves that:

Proposition 4.3.11. The family (vı̄)ı̄∈L spans A, and the family (s|̄ı|vı̄)ı̄∈L̄ spans A¡.

However, these families may be linearly dependent. The issue is that in monomials of degree ≥ 3,
there may be more than one way to start rewriting terms. Choosing different branches may lead to
different terms, leading to new relations.
Example 4.3.12. Let k = 2 and let R be spanned by v2v2 − v1v1. Then Rlead is spanned by (v2v2).
In particular, (1, 1, 2) and (2, 1, 1) belong to L(3). However, the corresponding elements v1v1v2 and
v2v1v1 of A are equal, because we can rewrite the monomial v2v2v2 in two different ways to get them.

Definition 4.3.13. If the family (vı̄)ı̄∈L is a basis of A, then it is called a Poincaré–Birkhoff–Witt
(PBW) basis of A.

Since we are only dealing with quadratic relations, we get the following useful criterion:

Theorem 4.3.14 (Diamond lemma). Let A = T (V, R) be a quadratic algebra with the same notation
as above. If the family (vı̄)ı̄∈L(3) is linearly independent in A, then (vı̄)ı̄∈L is a PBW basis of A.

The existence of a PBW basis has important consequences.

Theorem 4.3.15. If a quadratic algebra A admits a PBW basis, then it is Koszul.

We presented the theory of PBW bases in the non-necessarily-commutative case for simplicity.
However, an analogue of the theory exists in the commutative realm, see [133, Chap. V, Sec. 8].
Commutative PBW bases are defined analogously to (plain) PBW bases, with the main difference
being that arbitrary monomials are replaced with commutative monomials, i.e., there is no difference
between xy and yx for generators x, y ∈ V . The definitions of L and L̄ are slightly different: instead
of checking that consecutive elements are (or are not) leading terms, one must check that for any
sub-monomial of a given commutative monomial. The analogue of the diamond lemma, and the
implication of the Koszul property by the existence of a PBW basis, remain true for commutative
PBW bases [97].
Example 4.3.16. Let us now apply the above theory to the algebra GAg (r) from Ex. 2.4.36. Let us
order the set of generators of that algebra as follows:

1. First, the generators α1
1, β1

1 , α1
2, β1

2 , . . . , α1
r , β1

r , . . . , αg
r , βg

r ;
2. Then, the generators ωij with i < j, with the lexicographic order on (i, j).

This gives rise to these relations, which we write with the leading term first and where γ ∈ {α, β}:

γu
j ωij − γu

i ωij , ∀u, i, j;
αu

i βu
i − α1

i β1
i , ∀u > 1, i; αu

i βv
i , ∀u ̸= v, i;

αu
i αv

i , ∀u ̸= v, i; βu
i βv

i , ∀u ̸= v, i;
ωikωjk − ωijωjk + ωijωik, ∀i < j < k.
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It is then a little exercise to check that the diamond lemma applies, so that this choice of ordered
basis for the generators gives rise to a commutative PBW basis for the algebra. The basis is given as
follows, where νi = α1

i β1
i :

(4.3.17)

γk1 . . . γkaωi1j1 . . . ωibjb

∣∣∣∣∣∣∣
γ = ν or γ ∈ {αu, βu | 1 ≤ u ≤ g};
k1 < · · · < ka; j1 < · · · < jb; il < jl, ∀l;
{k1, . . . , ka} ∩ {j1, . . . , jb} = ∅.

 .

* * *
One of the motivations for our study of configuration was the computation of factorization homology
as defined by Ayala–Francis–Tanaka [20]. Let us now briefly explain their definition, and how one can
recover (special cases of) a theorem of Knudsen [102] from our results.

Definition 4.3.18. Let P be an operad, M be a right P-module, and N be a left P-module. The
tensor product of M and N over P is the coequalizer:

(4.3.19) M ◦P N := coeq
(
M ◦ P ◦ N⇒ M ◦ N

)
.

Remark 4.3.20. If M is a right P-module and A is a P-algebra, then we can view A as a left P-module
concentrated in arity zero and we have (M ◦P A)(0) = SM(A) (Def. 3.1.39). By abuse of notation, we
will write M ◦P A = (M ◦P A)(0), and similarly for the derived tensor product.

Definition 4.3.21. Let P, M, N be as above. The derived tensor product of M and N over P is the
homotopy coequalizer:

(4.3.22) M ◦LP N := hocoeq
(
M ◦ P ◦ N⇒ M ◦ N

)
.

Remark 4.3.23. The tensor product is a left Quillen functor in each variable [65], so the derived tensor
product can be computed by taking a cofibrant resolution of either the left or the right module.

Let M be a framed n-manifold. Recall the Fulton–MacPherson operad FMn and the right module
FMM from Sec. 3.4.

Definition 4.3.24. Let A be an FMn-algebra. The factorization homology of M with coefficients in
A is

∫
M A := FMM ◦LFMn

A.

Intuitively, an element of (the underived version of)
∫

M A is a configuration of points of M , each
decorated by an element of A. When several points collide, their decoration are multiplied together
using the FMn-algebra structure of A. This is reminiscent of the configuration spaces with summable
labels of Salvatore [144].
Remark 4.3.25. If we considered the non-unital version of FMn, then FMM would be cofibrant [161,
Lem. 2.3] and

∫
M A would be given by the plain tensor product rather than the derived one.

Let M be a simply connected framed closed manifold of dimension ≥ 4, let P be a Poincaré duality
model of M , and let A be an FMn-algebra. Using the formality of FMn (Th. 3.3.7), the category of
C∗(FMn)-algebras and the category of Poisn-algebras are Quillen equivalent. Thus, there exists a
Poisson n-algebra B such that C∗(A) ≃ B as C∗(FMn)-algebras. Using Th. 2.4.18, Th. 3.3.13, and
results on the tensor product [65], we then get that:

(4.3.26) C∗

(∫
M

A

)
≃ G∨

P ◦LPoisn
B,

where G∨
P is the (arity-wise) linear dual of GP , which forms a right Poisn-module.

Suppose now that B = S(g[1− n]) is the symmetric algebra on a shifted Lie algebra, which has a
natural n-Poisson structure (the Lie bracket is extended as a biderivation). This is an analogue of the
higher enveloping algebra of Knudsen [102]. By reinterpreting a computation of Félix–Thomas [62],
we obtain:

56



Najib Idrissi Habilitation à Diriger des Recherches

Proposition 4.3.27 (Special case of [100, Th. 3.16], [5, Prop. 81]). Let M and B = S(g[1− n]) be
as above. Then C∗(

∫
M B) is quasi-isomorphic to the Chevalley–Eilenberg complex of the Lie algebra

P ⊗ g (with homological grading).

Using curved Koszul duality (Th. 4.2.97), we generalized this result to symplectic Poisson n-algebras.
Let n ≥ 1 and D ≥ 0. The Poisson n-algebra An;D is the algebra of polynomial functions on the
standard shifted symplectic space T ∗RD[1− n]. Concretely, An;D = S(x1, . . . , xD, ξ1, . . . , ξD) is the
unital graded symmetric algebra on 2D variables, with deg xi = 0 and deg ξi = 1−n. The Lie bracket
is extended as a biderivation from the following formulas on generators:

(4.3.28) ∀i, j, {xi, xj} = 0, {ξi, ξj} = 0, {xi, ξj} = δij1.

We prove that factorization homology with coefficients in An;D can be computed by a unital version
of the Chevalley–Eilenberg chain complex. Using a perfect pairing on the generating Lie algebra of
An;D tensored with P , we deduce that:

Proposition 4.3.29 ([7, Prop. 5.17]). Let M be a simply connected framed manifold of dimension
≥ 4 and A a symplectic Poisson n-algebra. Then

∫
M A is acyclic, i.e., H∗

(∫
M A

)
= R.

* * *
To conclude this section, we present our application of Koszul duality to prefactorization algebras
(joint work with Rabinovich [8]). We refer again to Costello–Gwilliam [48, 49] for background on
(pre)factorization algebras.

Definition 4.3.30. Let M be a topological space. A prefactorization algebra F on M is the data of:
• for each open set U ⊆M , of a dg-module F(U);
• for each collection of disjoint open subsets U1, . . . , Uk contained in some open set V , of maps:

(4.3.31) µV
U1,...,Uk

:
k⊗

i=1
F(Ui)→ F(V );

satisfying associativity and equivariance constraints.

Example 4.3.32. A prefactorization algebra on ∅ is a commutative algebra.
Example 4.3.33. A prefactorization algebra on {∗} is the data of a commutative algebra and a module
over it.
Example 4.3.34. Let A be a unital associative algebra. There is a prefactorization algebra FA on R
defined as follows. Any open subset U ⊆ R can be written as a (potentially infinite) disjoint union
of nonempty intervals, U = ⊔

i Ji. Let F(U) := ⊗res
i A be the restricted tensor product, which is

the subspace of the tensor product spanned by elementary tensors of the form ⊗
i ai such that all

but finitely many ai is equal to 1. Given a collection of disjoint open subsets U1 ⊔ · · · ⊔ Uk ⊆ V , the
structure map µV

U1,...,Uk
is defined using the multiplication of A.

Remark 4.3.35. The prefactorization algebra F of the previous example satisfies a particular property:
if U ⊆ V is an inclusion of open subsets which is a homotopy equivalence, then the structure map
µV

U : F(U) → F(V ) is an isomorphism. Such a prefactorization algebra is called a locally constant
prefactorization algebra. Any locally constant prefactorization algebra on R is actually of the form
FA for some A.

Prefactorization algebras on M are algebras over a certain colored operad:

Definition 4.3.36. Let DisjM (or simply Disj when M is clear) be the colored operad whose colors
are the open subsets of M , and such that:

(4.3.37) Disj(U1, . . . , Uk; V ) =
{
R{µV

U1,...,Uk
}, if the Ui are pairwise disjoint and contained in V ;

0, otherwise.
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Definition 4.3.38. Let Opens be the sub-operad of Disj spanned by unary operations. Let Tens be
the sub-operad of Disj spanned by those µV

U1,...,Uk
such that V is the (disjoint) union of the Ui.

Remark 4.3.39. An algebra over Opens is a precosheaf on M . The operad Opens admits a presentation
with generators µV

U (for U ⊊ V ⊆M open) and relations µW
V µV

U = µW
U (for U ⊊ V ⊊ W ⊆M open).

Proposition 4.3.40. The operad Disj is isomorphic to the composition product Opens ◦ Tens for a
certain distributive law (see [117, Sec. 8.6]).

Theorem 4.3.41 ([8]). The operad Tens is quadratic Koszul. The presentation of Opens from
Rem. 4.3.39 is inhomogeneous Koszul. Consequently, the operad Disj is (inhomogeneous) Koszul.

The proof of the Koszul property goes through an analysis of the Koszul complex of qOpens, which
is easy to deal with; and the Koszul complex of Tens, which is similar to a colored version of the
Koszul complex of Com.

This theorem allows us to define an operad hoDisj = Ω(Disj¡) whose algebras are homotopy
prefactorization algebras. The explicit description of hoDisj-algebras [8, Prop. 4.1] is lengthy due to
complicated sums and signs. Briefly, a hoDisj algebra (on M) is the data of:

• for every open subset U ⊆M , a dg-module F(U);
• for every sequence of towers of inclusions U =

(
U11 ⊆ · · · ⊆ U1s1 , . . . , Uk1 ⊆ · · · ⊆ Uksk

)
of open

subsets, an operation of degree 2− k:

(4.3.42) µU : F(U11)⊗ · · · ⊗ F(Uk1)→ F(U1s1 ⊔ · · · ⊔ Uksk
).

The operations µU vanish on signed shuffles, and the differential is setup in such a way that the
operations µU provide homotopies for the precosheaf relation µW

V µV
U = µW

U and the associativity
relation of µU⊔V

U,V .
Example 4.3.43. A homotopy prefactorization algebra on ∅ is a C∞-algebra, that is, an algebra over
Ω(Com¡).
Example 4.3.44. A homotopy prefactorization algebra on {1} is a triple (A, M, η) where A is a
C∞-algebra, M is a C∞-A-module, and η : A→M is an ∞-morphism of modules.
Example 4.3.45. A homotopy prefactorization algebra F on the Sierpiński space {1, 2} (whose only
nontrivial open set is {1}) is the data of:

• a C∞-algebra A = F(∅);
• a C∞-A-module M = F({1});
• an ∞-morphism ηM : A→M ;
• a C∞-A-module N = F({1, 2});

• an ∞-morphism ηM : A→ N ;
• an ∞-morphism f : M → N ;
• a C∞-homotopy h between f ◦ ηM and ηN .

Example 4.3.46. We consider the prefactorization algebra Fg on R out of the Chevalley–Eilenberg
complex of a Lie algebra g tensored with the algebra of differential forms with compact support on
R. Costello–Gwilliam [48, Sec. 3.4] proved that the cohomology of Fg is the universal enveloping
algebra U(g) (viewed as a prefactorization algebra on R as in Ex. 4.3.34). We actually construct an
∞-quasi-isomorphism of hoDisj-algebras of Fg with its cohomology, i.e., we prove that it is formal as
a Disj-algebra.
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5  Appendix: Computation of Massey products in 
the configuration spaces of a surface

The objective of this appendix is to compute explicitly a Massey product in the cohomology of the configura-
tion space of r = 3 points in a surface of genus g = 1, that is, ConfS1×S1(3). We proceed in several steps:

1. We first compute a graded PBW basis for the Lambrechts–Stanley model GA(3) of the configuration space, 
where A = H*S1 ×S1 is a model of the surface (which is formal).

2. We compute the matrices of the differential d :GA(3)k  GA(3)k+1 and the product μ :GA(3)kGA(3)l  GA(3)k+l 
in this graded basis.

3. We compute representatives for bases of the cohomology groups Hk(GA(3)) = Zk Bk, where Zk is the kernel 
of the differential and Bk its image in degree k.

4. Using these representatives, we find a choice of deformation retract of cochain complexes of GA(3) onto its 
cohomology.

5. This deformation retract leads to explicit formulas for the transferred A∞-structure on H*(GA(3)). We deal 
with the binary product m2 :HkHl  Hk+l and the ternary product m3 :HkHlHn  Hk+l+n-1.

6. We end with a search for explicit classes α, β, γ such that m3(α, β, γ) ≠ 0 modulo the ideal generated by 
(α, γ), i.e., a nonzero obstruction to formality.

Remark : nothing in our code is specific to the case r = 3, g = 1. We could change the definitions of r and g at 
the beginning to compute the cohomology and transferred structure for any number of points in a surface of 
any genus, at the cost of increased computation time. Our choice is simply the smallest one that yields a non-
formal configuration space.

Produced with Mathematica 14.1.0 for Microsoft Windows (64-bit) (July 16, 2024).

Technical concerns

We define error messages to be used when the functions defined below are used in incorrect degrees.

In [1] := General::neg = "Degree `1` cannot be negative.";

General::neg2 = "Degrees `1` and `2` cannot be negative.";

General::neg3 = "Degrees `1`, `2`, and `3` cannot be negative.";

General::top = "Degree `1` cannot be more than `2`.";

General::top2 = "The sum of degrees `1` and `2`cannot be more than `3`.";

General::top3 = "The sum of degrees `1`, `2`, and `3` cannot be more than `4`.";

Skew-commutative product and relations

Basic definitions

These definitions make the wedge product bilinear:
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In [7] := ClearAll[Wedge]

(a___) ⋀ (q_)?NumericQ ⋀ (b___) := q* a ⋀ b

(a___) ⋀ ((q_)?NumericQ*(b_)) ⋀ (c___) := q* a ⋀ b ⋀ c

(a___) ⋀ (b_Plus) ⋀ (c___) := (a ⋀ #1 ⋀ c & ) /@ b

Wedge[a_] := a;

Wedge[] = 1;

SetAttributes[Wedge, {Flat, Listable}]

Generators

Formatting of the generators of the cohomology of the surface:

In [14] := MakeBoxes[α[u_, i_], StandardForm] ^:=

TemplateBox[MakeBoxes /@ {u, i}, "α", DisplayFunction  (SubsuperscriptBox["α", #2, #1] & )]

MakeBoxes[β[u_, i_], StandardForm] ^:=

TemplateBox[MakeBoxes /@ {u, i}, "β", DisplayFunction  (SubsuperscriptBox["β", #2, #1] & )]

MakeBoxes[ω[i_, j_], StandardForm] ^:= TemplateBox[MakeBoxes /@ {i, j},

"ω", DisplayFunction  (SubscriptBox["ω", RowBox[{#1, ",", #2}]] & )]

Let us consider the case of r = 3 points in a surface of genus g = 1 as our main example:

In [17] := g = 1; r = 3;

The list of generators. The order is important for the PBW basis later.

In [18] := generators = Catenate[

{SortBy[Flatten[Table[γ[u, i], {γ, {α, β}}, {u, g}, {i, r}]], {Apply[List], Head}],

Flatten[Table[ω[i, j], {i, r}, {j, i + 1, r}]]}]

Out[18]=

α1
1, β1

1, α2
1, β2

1, α3
1, β3

1, ω1,2, ω1,3, ω2,3

Useful definition: the top-degree class of the surface, in position i.

In [19] := ν[i_] := α[1, i] ⋀ β[1, i];

In [20] := positions = First /@ PositionIndex[generators]

Out[20]=

α1
1
 1, β1

1
 2, α2

1
 3, β2

1
 4, α3

1
 5, β3

1
 6, ω1,2  7, ω1,3  8, ω2,3  9

Twisting & square zero

These definitions make it so that u⋀u = 0 and u⋀v = ±v⋀u, including if these terms appear in the middle of a 
monomial.

In [21] := Wedge[OrderlessPatternSequence[u_, u_, ___]] := 0

In [22] := (x___) ⋀ (u_) ⋀ (v_) ⋀ (y___) /; positions[u] > positions[v] := -(x ⋀ v ⋀ u ⋀ y)

Relations

The relations defining the Lambrechts–Stanley model.

In [23] := (x___) ⋀ (γ : α β)[u_, j_] ⋀ (y___) ⋀ ω[i_, j_] ⋀ (z___) := x ⋀ γ[u, i] ⋀ y ⋀ ω[i, j] ⋀ z

In [24] := (x___) ⋀ α[u_, i_] ⋀ (y___) ⋀ β[u_, i_] ⋀ (z___) /; u > 1 := x ⋀ α[1, i] ⋀ y ⋀ β[1, i] ⋀ z

In [25] := Wedge[OrderlessPatternSequence[α[u_, i_], β[v_, i_], ___]] /; u ≠ v := 0

In [26] := Wedge[OrderlessPatternSequence[α[_, i_], α[_, i_], ___]] := 0
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In [27] := Wedge[OrderlessPatternSequence[β[_, i_], β[_, i_], ___]] := 0

In [28] := (x___) ⋀ ω[i_, k_] ⋀ (y___) ⋀ ω[j_, k_] ⋀ (z___) /; i < j < k :=

x ⋀ ω[i, j] ⋀ y ⋀ ω[j, k] ⋀ z - x ⋀ ω[i, j] ⋀ y ⋀ ω[i, k] ⋀ z

Basis for the CDGA

Produces the PBW basis of the CDGA:

◼ For a generator x, delPatt[x] returns the list of generators that cannot appear together with x in a monomial 
(i.e., terms that would be rewritten)

◼ Then we “fold” the lists by successively adding new generators (but only wedging them with monomials 
that are not forbidden by delPatt).

For this to work correctly, we need generators to be in the correct order.

In [29] := delPatt[(α β)[1, i_]] := (α β)[v_ /; v > 1, i] ω[_, i];

delPatt[(α β)[u_, i_]] /; u > 1 := (α β)[v_ /; v ≥ u, i] ω[_, i];

delPatt[ω[i_, j_]] := ω[_, j];

In [32] := combineMonomials[l_, x_] := Join[l, x ⋀ Select[l, FreeQ[delPatt[x]]]]

In [33] := basis = Fold[combineMonomials, {1}, Reverse[generators]];

In [34] := Length[basis]

Out[34]=

120

Computes the degree of a monomial and groups elements of the basis according to their degree.

In [35] := deg[x_Wedge] := deg[x] = Length[x]

deg[_α] = 1; deg[_β] = 1; deg[_ω] = 1;

deg[(x_)?NumberQ] = 0;

In [38] := gradedBasis = GroupBy[basis, deg];

In [39] := topDegree = Max[Keys[gradedBasis]]

Out[39]=

6

Computes the dimension of the piece of the model of degree d.

In [40] := dim[d_Integer] := Length[gradedBasis[d]]

In [41] := TableForm[Table[{d, dim[d], Short[gradedBasis[d]]}, {d, 0, topDegree}],

TableHeadings  {None, {"Degree", "Dimension", "Basis"}}]

Out[41]//TableForm=

Degree Dimension Basis

0 1 {1}

1 9 ω2,3, ω1,3, ω1,2, β3
1, α3

1, β2
1, α2

1, β1
1, α1

1

2 29 ω1,2 ⋀ω2,3, ω1,2 ⋀ω1,3, β3
1 ⋀ω1,2, α3

1 ⋀ω1,2, α3
1 ⋀β3

1, β2
1 ⋀ω2,3, β2

1 ⋀ω1,3, β2
1 ⋀β3

1, β2
1 ⋀α3

1

3 42 α3
1 ⋀β3

1 ⋀ω1,2, β2
1 ⋀α3

1 ⋀β3
1, α2

1 ⋀α3
1 ⋀β3

1, α2
1 ⋀β2

1 ⋀ω2,3, α2
1 ⋀β2

1 ⋀ω1,3, α2
1 ⋀β2

1 ⋀β3
1, α2

1 ⋀β2
1

4 29 α2
1 ⋀β2

1 ⋀α3
1 ⋀β3

1, β1
1 ⋀α3

1 ⋀β3
1 ⋀ω1,2, β1

1 ⋀β2
1 ⋀α3

1 ⋀β3
1, β1

1 ⋀α2
1 ⋀α3

1 ⋀β3
1, β1

1 ⋀α2
1 ⋀β2

1 ⋀ω2,3,

5 9 β1
1 ⋀α2

1 ⋀β2
1 ⋀α3

1 ⋀β3
1, α1

1 ⋀α2
1 ⋀β2

1 ⋀α3
1 ⋀β3

1, α1
1 ⋀β1

1 ⋀α3
1 ⋀β3

1 ⋀ω1,2, α1
1 ⋀β1

1 ⋀β2
1 ⋀α3

1 ⋀β3
1, 

6 1 α1
1 ⋀β1

1 ⋀α2
1 ⋀β2

1 ⋀α3
1 ⋀β3

1
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Differential

Defines the differential as a linear map satisfying the Leibniz rule, with prescribed behavior on generators.

In [42] := δ[(x_)?NumericQ] = 0;

In [43] := δ[sum_Plus] := δ /@ sum

In [44] := δ[(x_)?NumericQ*(w_)] := x *δ[w]

In [45] := δ[_α] = 0; δ[_β] = 0;

In [46] := δ[ω[i_, j_]] := ν[i] + ν[j] - Sum[α[u, i] ⋀ β[u, j] + α[u, j] ⋀ β[u, i], {u, g}]

In [47] := δ[m : (x_) ⋀ (y__)] := δ[m] = δ[x] ⋀ y - x ⋀ δ[Wedge[y]]

Example

In [48] := δ[ω[1, 2]]

Out[48]=

α1
1
⋀β1

1
- α1

1
⋀β2

1
+ α2

1
⋀β2

1
+ β1

1
⋀α2

1

In [49] := δ[ν[2] ⋀ω[1, 2]]

Out[49]=

α1
1
⋀β1

1
⋀α2

1
⋀β2

1

Matrix of the differential and of the product

Coefficients

Gets the coefficients of a (sum of) monomials in the graded basis.

In [50] := basisCoeff[0][k_] := {k};

In [51] := basisCoeff[d_Integer][_] /; d > topDegree = {0};

In [52] := basisCoeff[d_Integer][x_] :=

CoefficientListExpandAll[x] /. ThreadgradedBasis[d]  x.^Range[0, dim[d] - 1], x., dim[d]

Example:

In [53] := basisCoeff[2][ω[1, 3] ⋀ ω[2, 3]]

Out[53]=

{1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Sanity check:

In [54] := ReduceTable

Withu = Arraya., dim[d], basisCoeff[d][u . gradedBasis[d]]  u, {d, 0, topDegree}

Out[54]=

True

The matrix of _⋀_ :Cd1 Cd2  Cd1+d2

Remark: this computation (and the next one) can be quite slow for high values of g, r.
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In [55] := ClearAll[wedgeMatrix]

wedgeMatrix[d1_Integer, d2_Integer] /; d2 < d1 := Transpose[wedgeMatrix[d2, d1], {1, 3, 2}]

wedgeMatrix[d1_Integer, d2_Integer] :=

(wedgeMatrix[d1, d2] = Transpose[SparseArray[Table[basisCoeff[d1 + d2][x⋀ y],

{x, gradedBasis[d1]}, {y, gradedBasis[d2]}], {}], {2, 3, 1}]) /;

((d2 ≥ d1 && (d1 ≥ 0 && d2 ≥ 0)) || Message[wedgeMatrix::neg2, d1, d2]) &&

(d1 + d2 ≤ topDegree || Message[wedgeMatrix::top2, d1, d2, topDegree])

Example:

In [58] := wedgeMatrix[2, 1] . UnitVector[dim[1], 5] . UnitVector[dim[2], 2] . gradedBasis[3] 

gradedBasis[2]〚2〛 ⋀ gradedBasis[1]〚5〛

Out[58]=

True

The matrix of δ :Cd  Cd+1

In [59] := ClearAll[δMatrix]

δMatrix[-1] = 0;

δMatrix[d_Integer] :=

(δMatrix[d] = Transpose[SparseArray[basisCoeff[d + 1] @* δ /@ gradedBasis[d]]]) /;

(d ≥ 0 || Message[δMatrix::neg, d]) && (d ≤ topDegree || Message[δMatrix::top, d, topDegree])

“Plots” of the matrices (colors indicate nonzero entries, negative is blue, positive is orange).

In [62] := Table[MatrixPlot[δMatrix[d]], {d, 0, topDegree}]

Out[62]=



1

1

2

3

4

5

6

7

8

9

1

1

2

3

4

5

6

7

8

9

,

123456789

1

10

20

29

123456789
1

10

20

29

,

1 10 20 29

1

10

20

30

42

1 10 20 29

1

10

20

30

42

,

1 10 20 30 42

1

10

20

29

1 10 20 30 42

1

10

20

29

,

1 10 20 29

1
2
3
4
5
6
7
8
9

1 10 20 29

1
2
3
4
5
6
7
8
9

,

1 2 3 4 5 6 7 8 9

1

1 2 3 4 5 6 7 8 9

1,

1

1

1

1

Sanity check: the matrix faithfully encodes δ

In [63] := δFromMatrix[x_] /; deg[x] + 1 > topDegree := 0

In [64] := δFromMatrix[x_] := With[{d = deg[x]}, gradedBasis[d + 1] . δMatrix[d] . basisCoeff[d][x]]
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In [65] := Comap[{First, Equal}][{δFromMatrix[ν[2] ⋀ ω[1, 2]], δ[ν[2] ⋀ ω[1, 2]]}]

Out[65]=

α1
1
⋀β1

1
⋀α2

1
⋀β2

1, True

In [66] := AllTrue[basis, δ[#1]  δFromMatrix[#1] & ]

Out[66]=

True

Computing the cohomology

Goal: decompose Cd = Zd⊕Qd = Q
d-1

⊕Hd⊕Qd, where Zd = ker(δ) and δ :Qd  Q
d is an isomorphism

Basis of Zd = kerδ :Cd  Cd+1 ⊂ Cd

In [67] := ClearAll[ker]

ker[d_Integer] := (ker[d] = SparseArray[RowReduce[NullSpace[δMatrix[d]]]]) /;

(d ≥ 0 || Message[ker::neg, d]) && (d ≤ topDegree || Message[ker::top, d, topDegree])

In [69] := TableForm[ Table[{d, Length[ker[d]], Short[ker[d] . gradedBasis[d]]}, {d, 0, 6}],

TableHeadings  {None, {"d", "dim[ker[d]]", "ker[d]"}}]

Out[69]//TableForm=

d dim[ker[d]] ker[d]

0 1 {1}

1 6 β3
1, α3

1, β2
1, α2

1, β1
1, α1

1

2 17 -β1
1 ⋀ω1,2 - β1

1 ⋀ω1,3 + β1
1 ⋀ω2,3 + β2

1 ⋀ω1,3 - β2
1 ⋀ω2,3 + β3

1 ⋀ω1,2, -α1
1 ⋀ω1,2 - α1

1 ⋀ω1,3 +

3 26 -α1
1 ⋀β1

1 ⋀ω1,2 - 3 α1
1 ⋀β1

1 ⋀ω1,3 + 2 α1
1 ⋀β1

1 ⋀ω2,3 + 2 α1
1 ⋀β2

1 ⋀ω1,3 - α1
1 ⋀β2

1 ⋀ω2,3 - α2
1 ⋀β2

1 ⋀

4 21 α2
1 ⋀β2

1 ⋀α3
1 ⋀β3

1, -2 α1
1 ⋀β1

1 ⋀β2
1 ⋀ω1,3 + α1

1 ⋀β1
1 ⋀β2

1 ⋀ω2,3 - β1
1 ⋀α2

1 ⋀β2
1 ⋀ω1,3 + β1

1 ⋀α3
1 ⋀β3

1 ⋀ω

5 8 β1
1 ⋀α2

1 ⋀β2
1 ⋀α3

1 ⋀β3
1, α1

1 ⋀α2
1 ⋀β2

1 ⋀α3
1 ⋀β3

1, -α1
1 ⋀β1

1 ⋀α2
1 ⋀β2

1 ⋀ω1,3 + α1
1 ⋀β1

1 ⋀α3
1 ⋀β3

1 ⋀ω1,2

6 1 α1
1 ⋀β1

1 ⋀α2
1 ⋀β2

1 ⋀α3
1 ⋀β3

1

Basis for Qd ⊂ Cd, the complement of kerδ :Cd  Cd+1

The elements of ker[d] are row vectors, so its nullspace is its the orthogonal complement (an arbitrary choice 
of complementary subspace).

In [70] := ClearAll[complKer]

complKer[0] = {};

complKer[d_Integer] := (complKer[d] =

With[{null = NullSpace[ker[d]]}, If[null  {}, {}, SparseArray[RowReduce[null]]]]) /;

(d > 0 || Message[complKer::neg, d]) && (d ≤ topDegree || Message[complKer::top, d, topDegree])

In [73] := TableForm[Table[{d, Length[complKer[d]], If[complKer[d] != {}, Short[complKer[d] . gradedBasis[d]

TableHeadings -> {None, {"d", "dim[complKer[d]", "complKer[d]"}}]

Out[73]//TableForm=

d dim[complKer[d] complKer[d]

0 0 ∅

1 3 {ω2,3, ω1,3, ω1,2}

2 12 ω1,2 ⋀ω2,3, ω1,2 ⋀ω1,3, β1
1 ⋀ω1,2 + β3

1 ⋀ω1,2, α1
1 ⋀ω1,2 + α3

1 ⋀ω1,2, -β1
1 ⋀ω1,2 + β2

1 ⋀ω2

3 16 α1
1 ⋀β1

1 ⋀ω1,3 + α1
1 ⋀β1

1 ⋀ω2,3 + α3
1 ⋀β3

1 ⋀ω1,2, -α1
1 ⋀β1

1 ⋀ω1,2 - α1
1 ⋀β1

1 ⋀ω1,3 - 2 α1
1 ⋀β1

1

4 8 α1
1 ⋀β1

1 ⋀β2
1 ⋀ω1,3 + α1

1 ⋀β1
1 ⋀β2

1 ⋀ω2,3 + β1
1 ⋀α3

1 ⋀β3
1 ⋀ω1,2, -α1

1 ⋀β1
1 ⋀β2

1 ⋀ω1,3 - 2 α1
1 ⋀

5 1 α1
1 ⋀β1

1 ⋀α2
1 ⋀β2

1 ⋀ω1,3 + α1
1 ⋀β1

1 ⋀α2
1 ⋀β2

1 ⋀ω2,3 + α1
1 ⋀β1

1 ⋀α3
1 ⋀β3

1 ⋀ω1,2

6 0 ∅
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Basis for δQd = Q
d

⊂ Cd+1

In [74] := ClearAll[imComplKer]

imComplKer[-1] = {};

imComplKer[0] = {};

imComplKer[d_Integer] := (imComplKer[d] = Transpose[δMatrix[d].Transpose[complKer[d]]]) /;

(d > 0 || Message[imComplKer::neg, d]) &&

(d ≤ topDegree - 1 || Message[imComplKer::top, d, topDegree - 1])

In [78] := TableForm[Table[{d, Length[imComplKer[d]],

If[imComplKer[d] ≠ {}, Short[imComplKer[d] . gradedBasis[d + 1]], "∅"]},

{d, 0, topDegree - 1}], TableHeadings  {None, {"d", "dim[imComplKer[d]]", "imComplKer[d]"}}]

Out[78]//TableForm=

d dim[imComplKer[d]] imComplKer[d]

0 0 ∅

1 3 α2
1 ⋀β2

1 - α2
1 ⋀β3

1 + α3
1 ⋀β3

1 + β2
1 ⋀α3

1, α1
1 ⋀β1

1 - α1
1 ⋀β3

1 + α3
1 ⋀β3

1 + β1
1 ⋀α3

1, α1
1 ⋀β1

1 - α1
1 ⋀

2 12 -α1
1 ⋀β1

1 ⋀ω1,2 + α1
1 ⋀β1

1 ⋀ω2,3 - α1
1 ⋀β2

1 ⋀ω2,3 + α1
1 ⋀β3

1 ⋀ω1,2 + α2
1 ⋀β2

1 ⋀ω2,3 - α3
1 ⋀

3 16 α1
1 ⋀β1

1 ⋀α2
1 ⋀β2

1 - α1
1 ⋀β1

1 ⋀α2
1 ⋀β3

1 + 3 α1
1 ⋀β1

1 ⋀α3
1 ⋀β3

1 + α1
1 ⋀β1

1 ⋀β2
1 ⋀α3

1 - α1
1 ⋀β2

1 ⋀α3
1

4 8 -α1
1 ⋀β1

1 ⋀α2
1 ⋀β2

1 ⋀β3
1 - 3 α1

1 ⋀β1
1 ⋀β2

1 ⋀α3
1 ⋀β3

1 - β1
1 ⋀α2

1 ⋀β2
1 ⋀α3

1 ⋀β3
1, 6, α1

1 ⋀

5 1 3 α1
1 ⋀β1

1 ⋀α2
1 ⋀β2

1 ⋀α3
1 ⋀β3

1

Sanity check: dimQd = dim(Q
d

) (except for the top dimension)

In [79] := Reduce[Table[Length[imComplKer[d]]  Length[complKer[d]], {d, 0, topDegree - 1}]]

Out[79]=

True

Basis for D
d

⊂ Zd+1 expressed in terms of the basis of Zd found before

In [80] := ClearAll[restrImComplKer]

restrImComplKer[-1] = {};

restrImComplKer[0] = {};

restrImComplKer[d_Integer] := (restrImComplKer[d] =

Transpose[SparseArray[LinearSolve[Transpose[ker[d + 1]], Transpose[imComplKer[d]]]]]) /;

(d > 0 || Message[restrImComplKer::neg, d]) &&

(d ≤ topDegree - 1 || Message[restrImComplKer::top, d, topDegree - 1])

In [84] := TableForm[Table[{d, Length[restrImComplKer[d]], If[restrImComplKer[d] != {}, Short[restrImComplKer

TableHeadings -> {None, {"d", "dim[restrImComplKer[d]", "restrImComplKer[d]"}}]

Out[84]//TableForm=

d dim[restrImComplKer[d] restrImComplKer[d]

0 0 ∅

1 3 α2
1 ⋀β2

1 - α2
1 ⋀β3

1 + α3
1 ⋀β3

1 + β2
1 ⋀α3

1, α1
1 ⋀β1

1 - α1
1 ⋀β3

1 + α3
1 ⋀β3

1 + β1
1 ⋀α3

1, α1
1 ⋀β1

1 -

2 12 -α1
1 ⋀β1

1 ⋀ω1,2 + α1
1 ⋀β1

1 ⋀ω2,3 - α1
1 ⋀β2

1 ⋀ω2,3 + α1
1 ⋀β3

1 ⋀ω1,2 + α2
1 ⋀β2

1 ⋀ω2,3 -

3 16 α1
1 ⋀β1

1 ⋀α2
1 ⋀β2

1 - α1
1 ⋀β1

1 ⋀α2
1 ⋀β3

1 + 3 α1
1 ⋀β1

1 ⋀α3
1 ⋀β3

1 + α1
1 ⋀β1

1 ⋀β2
1 ⋀α3

1 - α1
1 ⋀β2

1

4 8 -α1
1 ⋀β1

1 ⋀α2
1 ⋀β2

1 ⋀β3
1 - 3 α1

1 ⋀β1
1 ⋀β2

1 ⋀α3
1 ⋀β3

1 - β1
1 ⋀α2

1 ⋀β2
1 ⋀α3

1 ⋀β3
1, 6,

5 1 3 α1
1 ⋀β1

1 ⋀α2
1 ⋀β2

1 ⋀α3
1 ⋀β3

1

In [85] := Reduce[Table[restrImComplKer[d] . ker[d + 1] . gradedBasis[d + 1] 

imComplKer[d] . gradedBasis[d + 1], {d, 1, topDegree - 1}]]

Out[85]=

True
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Basis for the homology Hd ⊂ Zd and then Hd ⊂ Cd

In [86] := ClearAll[restrHomology]

restrHomology[d_Integer] := ( restrHomology[d] = With[{rk = restrImComplKer[d - 1]},

If[rk  {}, IdentityMatrix[Length[ker[d]], TargetStructure  "Sparse"],

With[{null = NullSpace[rk]},

If[null  {}, {}, SparseArray[RowReduce[null]]]]]]) /;

(d ≥ 0 || Message[restrHomology::neg, d]) &&

(d ≤ topDegree || Message[restrHomology::top, d, topDegree])

In [88] := ClearAll[homology]

homology[d_Integer] :=

(homology[d] = With[{rhom = restrHomology[d]}, If[rhom  {}, {}, rhom.ker[d]]]) /;

(d ≥ 0 || Message[homology::neg, d]) && (d ≤ topDegree || Message[homology::top, d, topDegree])

In [90] := ClearAll[betti]

betti[d_Integer] := Length[homology[d]] /;

(d ≥ 0 || Message[betti::neg, d]) && (d ≤ topDegree || Message[betti::top, d, topDegree])

In [92] := TableForm[Table[{d, betti[d], Short[If[betti[d] > 0, homology[d] . gradedBasis[d], "∅"]]}, {d, 0,

Out[92]//TableForm=

d betti[d] homology[d]

0 1 {1}

1 6 β3
1, α3

1, β2
1, α2

1, β1
1, α1

1

2 14 -β1
1 ⋀ω1,2 - β1

1 ⋀ω1,3 + β1
1 ⋀ω2,3 + β2

1 ⋀ω1,3 - β2
1 ⋀ω2,3 + β3

1 ⋀ω1,2, -α1
1 ⋀ω1,2 - α1

1 ⋀ω1,3 + α1
1

3 14 -2 α1
1 ⋀β1

1 ⋀ω1,2 - 4 α1
1 ⋀β1

1 ⋀ω1,3 + 3 α1
1 ⋀β1

1 ⋀ω2,3 + 3 α1
1 ⋀β2

1 ⋀ω1,3 - 2 α1
1 ⋀β2

1 ⋀ω2,3 + α1
1 ⋀β3

1 ⋀ω1

4 5 1

5 0 ∅

6 0 ∅

Sanity check: the representatives of homology classes are actually cycles.

In [93] := Reduce[

Table[betti[d]  0 || AllTrue[homology[d] . gradedBasis[d], δ[#1]  0 & ], {d, 0, topDegree}]]

Out[93]=

True

The combined basis of Cd = Q
d-1

⊕Hd⊕Qd

In [94] := ClearAll[qhqBasis]

qhqBasis[d_Integer] := (qhqBasis[d] = Join[imComplKer[d - 1], homology[d], complKer[d]]) /;

(d ≥ 0 || Message[qhqBasis::neg, d]) && (d ≤ topDegree || Message[qhqBasis::top, d, topDegree])

Sanity check: these are actually bases.

In [96] := Reduce[Table[Det[qhqBasis[d]] ≠ 0, {d, 0, 6}]]

Out[96]=

True

In [97] := ClearAll[qhqInverse]

qhqInverse[d_Integer] := (qhqInverse[d] = SparseArray[Inverse[Transpose[qhqBasis[d]]]]) /;

(d ≥ 0 || Message[qhqInverse::neg, d]) &&

(d ≤ topDegree || Message[qhqInverse::top, d, topDegree])

In [99] := qhqDecompose[d_Integer][(u_)?VectorQ] := TakeList[qhqInverse[d] . u,

{Length[imComplKer[d - 1]], Length[homology[d]], Length[complKer[d]]}] /;

(d ≥ 0 || Message[qhqDecompose::neg, d]) &&

(d ≤ topDegree || Message[qhqDecompose::top, d, topDegree])
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Deformation retraction

The goal of this section is to compute the maps that define the deformation retraction of Cd onto Hd.

We define two functions each time: one that computes the matrix, and one that applies that matrix.

Injection d :Hd  Cd (bases: homology[d] for Hd, basis[d] for Cd)
In [100] :=

ClearAll[injMatrix]

injMatrix[d_Integer] := (injMatrix[d] = Transpose[homology[d]]) /;

(d ≥ 0 || Message[injMatrix::neg, d]) && (d ≤ topDegree || Message[injMatrix::top, d])

In [102] :=

inj[d_Integer][u_] := injMatrix[d].u

In [103] :=

Table[MatrixPlot[injMatrix[d]], {d, 0, topDegree}]

Out[103]=



1

1

1

1,

1 2 3 4 5 6

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6

1

2

3

4

5

6

7

8

9

,

1 5 10 14

1

10

20

29

1 5 10 14

1

10

20

29

,

1 5 10 14

1

10

20

30

42

1 5 10 14
1

10

20

30

42

,

12345

1

10

20

29

12345
1

10

20

29

, , 

Examples

In [104] :=

UnitVector[betti[2], 1] . homology[2] . gradedBasis[2]

Out[104]=

-β1
1
⋀ω1,2 - β1

1
⋀ω1,3 + β1

1
⋀ω2,3 + β2

1
⋀ω1,3 - β2

1
⋀ω2,3 + β3

1
⋀ω1,2

In [105] :=

inj[2][UnitVector[betti[2], 1]] . gradedBasis[2]

Out[105]=

-β1
1
⋀ω1,2 - β1

1
⋀ω1,3 + β1

1
⋀ω2,3 + β2

1
⋀ω1,3 - β2

1
⋀ω2,3 + β3

1
⋀ω1,2
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In [106] :=

UnitVector[betti[2], 2] . homology[2] . gradedBasis[2]

Out[106]=

-α1
1
⋀ω1,2 - α1

1
⋀ω1,3 + α1

1
⋀ω2,3 + α2

1
⋀ω1,3 - α2

1
⋀ω2,3 + α3

1
⋀ω1,2

In [107] :=

inj[2][UnitVector[betti[2], 2]] . gradedBasis[2]

Out[107]=

-α1
1
⋀ω1,2 - α1

1
⋀ω1,3 + α1

1
⋀ω2,3 + α2

1
⋀ω1,3 - α2

1
⋀ω2,3 + α3

1
⋀ω1,2

Retraction d :Cd  Hd (bases: basis[d] for Cd, homology[d] for Hd)
In [108] :=

ClearAll[rtrMatrix]

rtrMatrix[d_Integer] := (rtrMatrix[d] = qhqInverse[d]〚

Length[imComplKer[d - 1]] + 1 ;; Length[imComplKer[d - 1]] + Length[homology[d]]〛) /;

(d ≥ 0 || Message[rtrMatrix::neg, d]) && (d ≤ topDegree || Message[rtrMatrix::top, d, topDegree])

In [110] :=

rtr[d_Integer][0 _?VectorQ] /; rtrMatrix[d]  {} := {}

rtr[d_Integer][u_] := rtrMatrix[d].u

In [112] :=

Table[MatrixPlot[rtrMatrix[d]], {d, 0, topDegree}]

Out[112]=



1

1

1

1,

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

,

1 10 20 29

1

5

10

14

1 10 20 29

1

5

10

14

,

1 10 20 30 42

1

5

10

14

1 10 20 30 42

1

5

10

14

,

1 10 20 29

1
2
3
4
5

1 10 20 29

1
2
3
4
5
, , 
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Examples

In [113] :=

UnitVector[dim[2], 3] . gradedBasis[2]

Out[113]=

β3
1
⋀ω1,2

In [114] :=

rtr[2][UnitVector[dim[2], 3]] . homology[2] . gradedBasis[2]

Out[114]=

-
1

6
β1
1
⋀ω1,2 -

β1
1 ⋀ω1,3

6
+
β1
1 ⋀ω2,3

6
+
β2
1 ⋀ω1,3

6
-
β2
1 ⋀ω2,3

6
+
β3
1 ⋀ω1,2

6

In [115] :=

δMatrix[2].homology[2].rtr[2][UnitVector[dim[2], 3]]

Out[115]=

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Sanity check: ∘ = id.

In [116] :=

Reduce[Table[betti[d]  0 ||

rtrMatrix[d].injMatrix[d]  IdentityMatrix[Dimensions[rtrMatrix[d]]〚1〛], {d, 0, topDegree}]]

Out[116]=

True

Differential d :Cd  Cd+1 (bases: basis[_] for source and target)
In [117] :=

diff[-1][_] = 0;

In [118] :=

diff[d_Integer][u_] := δMatrix[d].u

Homotopy d :Cd+1  Cd (bases: basis[_] for source and target)
In [119] :=

ClearAll[htpMatrix]

htpMatrix[-1] = {{}};

htpMatrix[topDegree] = {{}};

htpMatrix[d_Integer] :=

(htpMatrix[d] =

SparseArray[Transpose[qhqBasis[d]] . PadRight[With[{l = Length[imComplKer[d]]},

PadRight[If[l  0, {{}}, IdentityMatrix[Length[imComplKer[d]]]],

{-dim[d], dim[d + 1]}]], {-dim[d], dim[d + 1]}] . qhqInverse[d + 1]]) /;

(d ≥ 0 || Message[htpMatrix::neg, d]) &&

(d ≤ topDegree || Message[htpMatrix::top, d, topDegree])
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In [123] :=

Table[MatrixPlot[htpMatrix[d]], {d, 0, topDegree - 1}]

Out[123]=



1 2 3 4 5 6 7 8 9

1

1 2 3 4 5 6 7 8 9

1,

1 10 20 29

1
2
3
4
5
6
7
8
9

1 10 20 29

1
2
3
4
5
6
7
8
9

,

1 10 20 30 42

1

10

20

29

1 10 20 30 42

1

10

20

29

,

1 10 20 29

1

10

20

30

42

1 10 20 29

1

10

20

30

42

,

123456789

1

10

20

29

123456789
1

10

20

29

,

1

1

2

3

4

5

6

7

8

9

1

1

2

3

4

5

6

7

8

9



In [124] :=

htp[d_Integer][_] /; htpMatrix[d]  {{}} := ConstantArray[0, dim[d]]

htp[d_Integer][u_] := htpMatrix[d].u

Sanity check: id-  ∘r = ∘+ ∘

In [126] :=

ReduceTableWithu = Arrayx., dim[d],

u - inj[d][rtr[d][u]]  diff[d - 1][htp[d - 1][u]] + htp[d][diff[d][u]], {d, 0, topDegree}

Out[126]=

True

Transferred structure

The goal of this section is to compute the transferred A∞-structure on the cohomology of the configuration 
space.

Binary product m2

Formula for the transferred structure:

In [127] :=

ExpressionTree[[[, ]], ImageSize  Tiny, TreeLayout  Bottom]

Out[127]=





 

Computes m2(u, v) for u, v expressed in the bases homology[d1], homology[d2], with result in the basis 
homology[d1 + d2].

If betti[_] = 0, then the tensor indices get mixed up since some are missing. We do not need to compute the 
transferred structure in that case, anyway.
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In [128] :=

ClearAll[mulMatrix]

mulMatrix::zeroBetti = "Transferred structure is trivial (vanishing Betti number).";

mulMatrix[d1_Integer, d2_Integer] :=

(mulMatrix[d1, d2] = Activate[TensorContract[Inactive[TensorProduct][

rtrMatrix[d1 + d2], wedgeMatrix[d1, d2], injMatrix[d1], injMatrix[d2]],

{{2, 3}, {4, 6}, {5, 8}}]]) /; ((d1 ≥ 0 && d2 ≥ 0) || Message[mulMatrix::neg2, d1, d2]) &&

(d1 + d2 ≤ topDegree || Message[mulMatrix::top2, d1, d2, topDegree]) &&

((betti[d1] > 0 && betti[d2] > 0 && betti[d1 + d2] > 0) || Message[mulMatrix::zeroBetti])

In [131] :=

mul[d1_, d2_][u_, v_] := mulMatrix[d1, d2] . v . u

Remark: We cannot plot these “matrices,” which are actually tensors of rank 3. We could choose a basis for 
the tensor product, but this would be inconveniently large.

Example

This one works:

In [132] :=

mulMatrix[1, 1]

Out[132]=

SparseArray
Specified elements: 120
Dimensions: {14, 6, 6} 

This one doesn’t:

In [133] :=

mulMatrix[3, 3]

mulMatrix : Transferred structure is trivial (vanishing Betti number).

Out[133]=

mulMatrix[3, 3]

In [134] :=

ex`v1 = UnitVector[betti[1], 1]; ex`v2 = UnitVector[betti[1], 2];

ex`v1 . homology[1] . gradedBasis[1]

ex`v2 . homology[1] . gradedBasis[1]

Out[135]=

β3
1

Out[136]=

α3
1

In [137] :=

mul[1, 1][ex`v1, ex`v2] . homology[2] . gradedBasis[2]

Out[137]=

α1
1 ⋀β1

1

9
+
α1
1 ⋀β2

1

9
-
2 α1

1 ⋀β3
1

9
+
α2
1 ⋀β2

1

9
-
2 α2

1 ⋀β3
1

9
-
5 α3

1 ⋀β3
1

9
-
β1
1 ⋀α2

1

9
+
2 β1

1 ⋀α3
1

9
+
2 β2

1 ⋀α3
1

9

Sanity check: m2(a, b) is cohomologous to a⋀b, i.e., their difference is in the image of δ

In [138] :=

ex`mat = LinearSolve[δMatrix[1], mul[1, 1][ex`v1, ex`v2] . homology[2] -

basisCoeff[2][ex`v1 . homology[1] . gradedBasis[1] ⋀ ex`v2 . homology[1] . gradedBasis[1]]]

Out[138]=


2

9
,
2

9
, -

1

9
, 0, 0, 0, 0, 0, 0
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In [139] :=

Simplify[δ[ex`mat . gradedBasis[1]]  mul[1, 1][ex`v1, ex`v2] . homology[2] . gradedBasis[2] -

ex`v1 . homology[1] . gradedBasis[1] ⋀ ex`v2 . homology[1] . gradedBasis[1]]

Out[139]=

True

Examples in degree (1,1)

The cell is interactive in the Mathematica notebook, and the user can choose to view the result of the trans-
ferred binary operation of any two elements of the basis of the cohomology.

In [140] :=

With[{d1 = 1, d2 = 1},

Manipulate[mul[d1, d2][UnitVector[betti[d1], a], UnitVector[betti[d2], b]] .

homology[d1 + d2] . gradedBasis[d1 + d2],

{a, MapIndexed[First[#2]  #1 & , homology[d1] . gradedBasis[d1]], ControlType  SetterBar},

{b, MapIndexed[First[#2]  #1 & , homology[d2] . gradedBasis[d2]], ControlType  SetterBar}]]

Out[140]=

a β3
1 α3

1 β2
1 α2

1 β1
1 α1

1

b β3
1 α3

1 β2
1 α2

1 β1
1 α1

1

0

Ternary product m3

Formula for the transferred structure:

In [141] :=

ExpressionTree[[[, [[, ]]]], ImageSize  Tiny, TreeLayout  Bottom] -

ExpressionTree[[[[[, ]], ]], ImageSize  Tiny, TreeLayout  Bottom]

Out[141]=

-









 

 +





 



 

Computes m3(u, v, w) for u, v, w of degrees d1, d2, d3 expressed in the bases 
homology[d1], homology[d2], homology[d3], with result in the basis homology[d1 + d2 + d3 - 1]:
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In [142] :=

mulMatrix[d1_Integer, d2_Integer, d3_Integer] :=

(mulMatrix[d1, d2, d3] =

Activate[TensorContract[Inactive[TensorProduct][rtrMatrix[d1 + d2 + d3 - 1],

wedgeMatrix[d1, d2 + d3 - 1], injMatrix[d1], htpMatrix[d2 + d3 - 1],

wedgeMatrix[d2, d3], injMatrix[d2], injMatrix[d3]],

{{2, 3}, {4, 6}, {5, 8}, {9, 10}, {11, 13}, {12, 15}}] -

TensorContract[Inactive[TensorProduct][rtrMatrix[d1 + d2 + d3 - 1], wedgeMatrix[d1 + d2 - 1,

d3], htpMatrix[d1 + d2 - 1], wedgeMatrix[d1, d2], injMatrix[d1], injMatrix[d2],

injMatrix[d3]], {{2, 3}, {4, 6}, {7, 8}, {9, 11}, {10, 13}, {5, 15}}]]) /;

((d1 ≥ 0 && d2 ≥ 0 && d3 ≥ 0) || Message[mulMatrix::neg3, d1, d2, d3]) &&

(d1 + d2 + d3 ≤ topDegree - 1 || Message[mulMatrix::top3, d1, d2, d3, topDegree - 1]) &&

((betti[d1] > 0 && betti[d2] > 0 && betti[d3] > 0 && betti[d1 + d2] > 0 &&

betti[d2 + d3] > 0 && betti[d1 + d2 + d3 - 1] > 0) || Message[mulMatrix::zeroBetti])

In [143] :=

mul[d1_, d2_, d3_][u_, v_, w_] := mulMatrix[d1, d2, d3] . w . v . u

Example

In [144] :=

mulMatrix[1, 1, 1]

Out[144]=

SparseArray
Specified elements: 162
Dimensions: {14, 6, 6, 6} 

This one cannot be done:

In [145] :=

mulMatrix[5, 0, 0]

mulMatrix : Transferred structure is trivial (vanishing Betti number).

Out[145]=

mulMatrix[5, 0, 0]

In [146] :=

With[{d1 = 1, d2 = 1, d3 = 1}, Manipulate[mul[d1, d2, d3][

UnitVector[betti[d1], a], UnitVector[betti[d2], b], UnitVector[betti[d3], c]] .

homology[d1 + d2 + d3 - 1] . gradedBasis[d1 + d2 + d3 - 1],

{a, MapIndexed[First[#2]  #1 & , homology[d1] . gradedBasis[d1]],

ControlType  SetterBar}, {b, MapIndexed[First[#2]  #1 & , homology[d2] . gradedBasis[d2]],

ControlType  SetterBar, Appearance  "Row"},

{c, MapIndexed[First[#2]  #1 & , homology[d3] . gradedBasis[d3]],

ControlType  SetterBar, Appearance  "Row"}]]

Out[146]=

a β3
1 α3

1 β2
1 α2

1 β1
1 α1

1

b β3
1 α3

1 β2
1 α2

1 β1
1 α1

1

c β3
1 α3

1 β2
1 α2

1 β1
1 α1

1

0

Searching for the Massey product

Somehow Solve or FindInstance are unhappy about indexed variables of the form h[i].
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In [147] :=

toVars = (h : a b c)[i_]  ToExpression[StringJoin[ToString[h], ToString[i]]];

In [148] :=

d1 = 1; d2 = 1; d3 = 1;

In [149] :=

u = Array[a, betti[d1]] /. toVars;

v = Array[b, betti[d2]] /. toVars;

w = Array[c, betti[d3]] /. toVars;

vars = Join[u, v, w];

In [153] :=

eq1 = Thread[mul[d1, d2][u, v]  0];

In [154] :=

eq2 = Thread[mul[d2, d3][v, w]  0];

In [155] :=

eq3 = Simplify[{Or @@ Thread[mul[d1, d2, d3][u, v, w] ≠ 0]}];

In [156] :=

inst = First[FindInstance[Join[eq1, eq2, eq3], vars]]

Out[156]=

a1  8, a2  6, a3  -
32

3
, a4  -8, a5 

8

3
, a6  2, b1  -1, b2  8, b3 

4

3
,

b4  -
32

3
, b5  -

1

3
, b6 

8

3
, c1  -3, c2 

9

2
, c3  4, c4  -6, c5  -1, c6 

3

2


In [157] :=

uSol = u /. inst;

vSol = v /. inst;

wSol = w /. inst;

In [160] :=

uSol . homology[1] . gradedBasis[1]

vSol . homology[1] . gradedBasis[1]

wSol . homology[1] . gradedBasis[1]

Out[160]=

2 α1
1
- 8 α2

1
+ 6 α3

1
+
8 β1

1

3
-
32 β2

1

3
+ 8 β3

1

Out[161]=

8 α1
1

3
-
32 α2

1

3
+ 8 α3

1
-
β1
1

3
+
4 β2

1

3
- β3

1

Out[162]=

3 α1
1

2
- 6 α2

1
+
9 α3

1

2
- β1

1
+ 4 β2

1
- 3 β3

1

The solution satisfies m2(u, v) =m2(v, w) = 0 and m3(u, v, w) ≠ 0:

In [163] :=

mul[d1, d2][uSol, vSol] . homology[d1 + d2] . gradedBasis[d1 + d2]

Out[163]=

0

In [164] :=

mul[d2, d3][vSol, wSol] . homology[d2 + d3] . gradedBasis[d2 + d3]

Out[164]=

0
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In [165] :=

mul[d1, d2, d3][uSol, vSol, wSol] . homology[d1 + d2 + d3 - 1] . gradedBasis[d1 + d2 + d3 - 1]

Out[165]=

192 α1
1
⋀ω1,2 + 192 α1

1
⋀ω1,3 - 192 α1

1
⋀ω2,3 - 192 α2

1
⋀ω1,3 + 192 α2

1
⋀ω2,3 -

192 α3
1
⋀ω1,2 - 24 β1

1
⋀ω1,2 - 24 β1

1
⋀ω1,3 + 24 β1

1
⋀ω2,3 + 24 β2

1
⋀ω1,3 - 24 β2

1
⋀ω2,3 + 24 β3

1
⋀ω1,2

Even better, m3(u, v, w) is not in the ideal (u, w). This should not find a solution:

In [166] :=

idealSol = Simplify[Join[mulMatrix[d1 + d2 - 1, d3] . wSol,

Activate[TensorContract[Inactive[TensorProduct][mulMatrix[d1, d2 + d3 - 1], uSol],

{{2, 4}}]], 2]]

Out[166]=

SparseArray
Specified elements: 96
Dimensions: {14, 12} 

In [167] :=

LinearSolve[idealSol, mul[d1, d2, d3][uSol, vSol, wSol]]

LinearSolve: Linear equation encountered that has no solution.

Out[167]=

LinearSolveSparseArray
Specified elements: 96
Dimensions: {14, 12} , {24, -192, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

We could think that we are lucky that the first solution found is such that m3(u, v, w) not in the ideal gener-
ated by (u, w), as this was not included in the equations. However, in this example, the intersection of the 
ideal and the image of m3 is trivial.

In [168] :=

ideal = Simplify[Join[mulMatrix[d1 + d2 - 1, d3] . w, Activate[

TensorContract[Inactive[TensorProduct][mulMatrix[d1, d2 + d3 - 1], u], {{2, 4}}]], 2]]

Out[168]=

SparseArray
Specified elements: 96
Dimensions: {14, 12} 

Every element of the ideal (u, w) is orthogonal to m3(u, v, w):

In [169] :=

mul[d1, d2, d3][u, v, w] . ideal

Out[169]=

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
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