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We investigate the relationship between symmetric functions and the rep-
resentation theory of operads, relative operads, and PROPs. We extend
the classical character map for symmetric sequences to relative bisymmetric
sequences and symmetric bimodules. We introduce new operations on sym-
metric functions, the relative plethysm and the box product, which model via
the character map the composition product of relative operads and the box
product of PROPs. As applications, we include the computation of characters
for stable twisted cohomology of automorphism groups of free groups and the
Albanese cohomology of the IA-automorphism group.

Contents
1. Introduction 2

2. Symmetric functions and operads 5
2.1. Symmetric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Symmetric sequences and operads . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Character map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Bisymmetric functions and relative operads 12
3.1. Bisymmetric pairs and plethysm . . . . . . . . . . . . . . . . . . . . . . . 12
3.2. Relative operads and relative composition product . . . . . . . . . . . . . 14
3.3. Character map for bisymmetric sequences . . . . . . . . . . . . . . . . . . 15

4. Bisymmetric functions and PROPs 18
4.1. PROPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2. Character of the saturation and the box product . . . . . . . . . . . . . . 20

∗Université Paris Cité and Sorbonne Université, CNRS, IMJ-PRG, F-75013 Paris, France.
†Institut for Matematiske Fag, Københavns Universitet, Universitetsparken 5, 2100 København Ø,

Denmark

1



5. Applications 23
5.1. Stable twisted cohomology of automorphism groups of free groups . . . . 23
5.2. Stable algebraic cohomology of the IA-automorphism group . . . . . . . . 25

A. Code and computations 27

1. Introduction
An operad is an object which consist of abstract multilinear operations, with some number
of inputs and one output, which can be composed together in a natural way. Each operad
has an underlying symmetric sequence, i.e. sequences of representations of symmetric
groups. It is well-known that, in characteristic zero, the ring R(S∗) of isomorphism
classes of symmetric sequences is isomorphic to the completion of the ring Λ of symmetric
functions, i.e., symmetric polynomials in infinitely many variables. The isomorphism,
which can be viewed as a kind of decategorification, is realized by the character map
ch : R(S∗) → Λ̂.

An operad is a monoid in the category of symmetric sequences under a certain monoidal
structure, called the composition product. Under the character map, the composition
product on the source corresponds to an operation called the plethysm of symmetric
functions. The plethysm is easy to characterize in terms of explicit generators of Λ, making
it practical for calculations. In Section 2 below, we review the setup and proof of this
correspondence in more detail. The results of this paper concern similar correspondences
for two generalizations of operads, namely relative operads and PROPs.

Relative operads The first generalizations of operads that we consider are relative
operads, also called “Swiss-Cheese type operads.” They encode operations with inputs of
two kinds, or “colors”, and one output. Their underlying objects are relative bisymmetric
sequences, that is, pairs (N̄,N), where N is a symmetric sequence, and N̄ = (N(m,n))m,n∈N
is a bisymmetric sequence, i.e. a family of (Sm × Sn)-modules, which we think of spaces
with m inputs of one color and n of a different color. Just like regular operads, relative
operads are monoids for a certain composition product:

(M̄,M) ◦̄ (N̄,N) :=
(
M̄ ◦̄ (N̄,N),M ◦ N

)
.

The decategorification of relative bisymmetric sequences is the ring of relative bisym-
metric functions, which is the product ring Λ̂x,y × Λ̂x, The character map

ch : R(S∗ × S∗) → Λ̂x,y

from the ring of isomorphism classes of bisymmetric sequences is an isomorphism. In
Section 3.2 below, we define a “relative plethysm”

◦̄ : Λ̂x,y × (Λ̂x,y × Λ̂x) → Λ̂x,y.

Similarly to the classical plethysm, the relative plethysm is easily characterized in terms
of explicit generators and therefore practical for calculations. We prove that it is the
character of the relative composition product:
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Theorem A (Theorem 3.19). Given a bisymmetric sequence M̄ and a relative bisymmetric
sequence (N̄,N), we have that

ch
(
M̄ ◦̄ (N̄,N)

)
= ch(M̄) ◦̄

(
ch(N̄), ch(N)

)
.

PROPs A different generalization of operads are PROPs, which encode multilinear
operations with several inputs and outputs. PROPs were initially introduced by Mac Lane
[Mac65], though we take here a point of view closer to the operadic one [Val07]. The
underlying objects of PROPs are symmetric bimodules, that is families (M(m,n))m,n∈N
such that M(m,n), the space of operations with n inputs and m outputs, is endowed with
a left Sm-action and right Sn-action. Under the character map, the ring of symmetric
bimodules is isomorphic to Λ̂x,y, the completed ring of bisymmetric functions.

In the first part of Section 4, we first deal with a technical issue: the objects of
PROPs are actually saturated symmetric bimodules, that is, symmetric bimodules that
are invariant under a certain idempotent “saturation” operation on symmetric bimodules.
We introduce a saturation operation on bisymmetric functions, and we prove that it
corresponds to the saturation of symmetric bimodules under the character map.

In the category of saturated bisymmetric sequences, PROPs are the monoids under a
certain monoidal structure called the box product (see [Val07]). In the second part of
Section 4, we introduce a box product:

⊠ : Λ̂x,y × Λ̂x,y → Λ̂x,y.

The construction of the box product was inspired by a similar construction for modular
operads appearing in [GK98]. The box product of bisymmetric functions is more
complicated to calculate than the plethysm and relative plethysm, but can still be
expressed in relatively simple terms on generators and is thus also useful for calculations.
Moreover, we prove that:

Theorem B (Theorem 4.12). Let M, N be symmetric bimodules. The character of their
box product satisfies:

ch(M ⊠ N) = ch(M) ⊠ ch(N).

Applications The plethysm and its generalizations are not only interesting from the
perspective of being a “decategorification” of interesting operations on symmetric se-
quences, relative symmetric sequences and symmetric bimodules, but they are also useful
in practice. Many interesting objects appearing naturally in algebra, geometry and
topology are equipped with operadic or PROP-structures and using symmetric functions
is thereby a tractable way to understand their representation theory. For example,
Garoufalidis–Getzler [GG17] used this correspondence to study twisted cohomology
of mapping class groups and the Torelli Lie algebra. A similar method was used by
Kupers–Randal-Williams [KR20, Section 6] to study the character of stable cohomology
groups of Torelli groups into irreducible representations of symplectic groups, by relating
this decomposition to the character of a certain symmetric sequence of stable twisted
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cohomology of the mapping class group. In the final section of this paper, we use our
generalizations of the plethysm to obtain similar results.

The second author [Lin22] computed the stable rational cohomology groups of Aut(Fn),
where Fn is the free group on n generators, with certain “bivariant” twisted coefficients.
These cohomology groups naturally form a PROP, whose structure was studied by
Kawazumi–Vespa [KV23]. Combining these results, one obtains a simple description of
the PROP in terms of two generators. As a symmetric bimodule, it can be expressed as
the saturation of a very simple symmetric bimodule, so in Section 5, we apply our results
to calculate its character. We also calculate the character of the closely related PROP
associated to the (shift of) the operad Com, which encodes commutative algebras. The
structure of this PROP was studied by Emprin–Hunter–Livernet–Vespa–Zakharevich
[EHLVZ24].

In [Lin24], the second author applied the results of [Lin22] to study the rational
cohomology of IAn, which is the kernel of the natural map Aut(Fn) → GLn(Z). In the
appendix of [Lin24], Katada used the results of the paper to calculate the part of the stable
cohomology generated by the first cohomology under the cup product, typically known
as the “Albanese cohomology”. The stable Albanese cohomology had been previously
determined up to degree 3, in work of Kawazumi [Kaw05], Pettet [Pet05] and Katada
[Kat22]. Similarly to in [KR20], one of the results of [Lin24] relates the decomposition of
a certain symmetric sub-bimodule of the stable bivariant twisted cohomology of Aut(Fn)
to the decomposition of the Albanese cohomology into irreducible representations of
GLn(Q). This symmetric bimodule may also be described as the saturation of a symmetric
bimodule whose character is easy to write down by hand, thereby allowing us to use
our results to calculate the character of the stable Albanese cohomology in arbitrary
degree and thereby determining its decomposition into irreducibles in an efficient way.
In Appendix A, we include the character, computed by implementing our results in
Mathematica, up to degree 5 (at which point it is already quite unwieldy to write down).

Conventions We let N = {0, 1, . . . } be the set of nonnegative integers. For n ∈ N, we
write Sn for the nth symmetric group and S∞ =

⋃
n∈NSn. We fix a commutative ring k.

We work in the categories Modk of k-modules and gModk of (cohomologically) Z-graded
k-modules.

For λ := (λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0) a partition, we denote by |λ| := λ1 + · · · + λl its
weight and by l(λ) its length, i.e. the largest l such that λl ̸= 0. We sometimes write
λ ⊣ |λ| to express that λ is a partition of n = |λ|.

Acknowledgements The authors thank Frédéric Han, Dan Petersen, and Thomas
Willwacher for useful discussions. The authors acknowledge support from project ANR-
22-CE40-0008 SHoCoS. N.I. also acknowledges support from project ANR-20-CE40-0016
HighAGT and contributes to the IdEx University of Paris ANR-18-IDEX-0001. E.L. was
supported by the Knut and Alice Wallenberg Foundation through grant no. 2022.0278.
He is also grateful to the Copenhagen Centre for Geometry and Topology for their
hospitality during the writing of this paper.
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2. Symmetric functions and operads
In this section, we recall the basics ot the theory of symmetric functions and plethysm,
symmetric sequences and composition product, and the link between the two. We refer
to [Mac95] or [Sta99, Chap. 7] for symmetric functions and [LV12] for operads. Characters
of (cyclic and modular) operads are studied in [GK94; GK98].

2.1. Symmetric functions
For k ≥ 1, consider the graded polynomial ring Z[x1, . . . , xk], where each generator
has degree one. The symmetric group Sk acts on this graded ring by permuting the
generators. A symmetric polynomial in k variables is an element of the invariant subring

Λk := Z[x1, . . . , xk]Sk .

We write Λn
k for the degree n part of this graded ring. There is a graded ring homomor-

phism ρk : Λk+1 → Λk, defined by ρ(xk+1) = 0 and ρ(xi) = xi for 1 ≤ i ≤ k.

Definition 2.1. The ring of symmetric functions is the graded ring

Λ := lim(· · · → Λk+1
ρk−→ Λk → · · · → Λ1).

We denote the degree n part of Λ by Λn and let Λ̂ denote the completion of Λ with
respect to the induced filtration. As graded Z-modules, Λ and Λ̂ decompose as:

Λ =
⊕
n≥0

Λn ⊊ Λ̂ =
∏
n≥0

Λn.

Since we will deal with graded representations of symmetric groups, we will also consider
the rings Λ((ℏ)) and Λ̂((ℏ)) of formal Laurent series. Note that these rings are bigraded,
with Λn in bidegree (n, 0) and ℏ in bidegree (0, 1).

Notation 2.2. Since we will sometimes change the names of the variables used to define
symmetric functions, we will call the previous ring Λx in some places. The ring Λy will
be defined similarly except we replace each xi by yi.

Notation 2.3. Any symmetric function f ∈ Λ̂ can be written uniquely as an infinite
sum f =

∑
α fαx

α, where α = (α1, α2, . . . ) is a multi-index, αi ≥ 0 and all but finitely
many αi vanish, each fα is in Z, and xα =

∏∞
i=1 x

αi
i . Since f is symmetric, we have

fα = fσ·α for all α and σ ∈ S∞. Moreover, f belongs to Λ ⊂ Λ̂ if and only if there exists
d ∈ N such that if |α| :=

∑
i αi is bigger than d, then fα vanishes.

Let us introduce some classical elements of Λ. For n ∈ N, the nth elementary symmetric
function en ∈ Λn, the n complete symmetric function hn ∈ Λn, and the nth power sum
pn ∈ Λn are given by:

en :=
∑

i1<···<in

xi1 . . . xin ; hn :=
∑

i1≤···≤in

xi1 . . . xin ; pn :=
∑

i

xn
i = xn

1 + xn
2 + . . . (1)
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For example, e0 = h0 = p0 = 1, e1 = h1 = p1 = x1 + x2 + . . . , and and p2 = h2 − e2.
Another classical family of elements of Λ is given by Schur functions. These admit

several different definitions; let us give a combinatorial definition in terms of Young
tableaux.

Definition 2.4. Given a partition λ, a Young tableau of shape λ is obtained by filling
the boxes of the Young diagram corresponding to λ with non-negative integers (where
the same number may appear several times, or not at all). We say that a Young tableau
is semistandard if its entries weakly increase along each row and increase strictly down
each column; see Figure 2.1 for an example.

Figure 1: A semistandard Young tableau correspond-
ing to the partition λ = (5, 3, 2).

1 1 3 4 4
3 5 5
4 6

Example 2.5. Given n ∈ N, λ a partition of n and T a semistandard Young tableau of
shape λ, we can associate to it a multi-index αT = (α1, α2, . . .) where αi is the number
of occurrences of i in T . We define the Schur function sλ ∈ Λn by

sλ :=
∑

T

xαT ,

where the sum is taken over all semi-standard Young tableaux of shape λ.

Proposition 2.6. The family (sλ)|λ|=n is an additive basis for Λn. Both families (en)n≥1
and (hn)n≥1 are sets of algebraically independent generators of the ring Λ. Moreover,
(pn)n≥1 is a set of algebraically independent generators for the ring Λ ⊗ Q.

Using this proposition, we can define an involution

ω : Λ → Λ, en 7→ hn. (2)

We have ω(sλ) = sλT , where λT denotes the transpose of the partition λ, and ω(pn) =
(−1)n−1pn. This involution is useful in our applications below.

Let us now turn our attention to the plethysm.

Definition 2.7. Given f, g ∈ Λx := Λ, the (one-variable) plethysm f ◦ g ∈ Λx is defined
as follows. Let g =

∑
α gαx

α (see Notation 2.3) and suppose that gα ≥ 0 for all α.
Introduce temporary variables zi (only well defined up to permutation) such that, for a
placeholder variable t, one has:∏

i

(1 + zit) =
∏
α

(1 + xαt)gα ; (3)

Then the plethysm is given by:

(f ◦ g)(x1, x2, . . . ) := f(z1, z2, . . . ). (4)
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Concretely, f ◦ g is obtained by substituing the monomials that appear in g (with
multiplicity) into f(x1, x2, . . . ). To fully define the plethysm (i.e., when g has negative
coefficients) we use the next propositions.

Proposition 2.8. The plethysm is an endomorphism of rings in the first variable.
Moreover, it intertwines with the involution ω, i.e., for f ∈ Λm and g ∈ Λn,

ω(f ◦ g) =
{
f ◦ ω(g), if n is even;
ω(f) ◦ ω(g), otherwise.

(5)

Proposition 2.9. For all n ≥ 0, the map g 7→ pn ◦ g is an endomorphism of rings, and:

pn ◦ g = g(xn
1 , . . . ) = g ◦ pn; ∀m ≥ 0, pn ◦ pm = pmn. (6)

Example 2.10. Since h2(x) = x2
1 + x1x2 + · · · + x2

2 + . . . , it follows that

(pr ◦h2)(x) = pr(x2
1, x1x2, . . . , x

2
2, . . . ) = x2r

1 +xr
1x

r
2 + · · ·+x2r

2 + · · · = h2(xr
1, x

r
2, . . . ). (7)

Since (pn)n≥0 is a ring basis of Λ ⊗ Q, these properties allow to define the plethysm
f ◦ g even when g has negative coefficients: one can write g =

∑
α gαpα and then define

f ◦ g :=
∑

α gα(f ◦ pα).
Moreover, the plethysm extends to an operation Λ̂ × Λ̂≥1 → Λ̂ (i.e., if the second

variable vanishes at x = 0), by noting that if f ∈ Λk and g ∈ Λl then f ◦ g is in Λkl.
Finally, we can extend the plethysm to Λ((ℏ)) and Λ̂((ℏ)) as follows: let g(x, ℏ) =∑
k,α gα,kx

α(−ℏ)k, where we assume gα,k ≥ 0 for all α and k. We again introduce
temporary variables zi,k such that for a placeholder variable t, we have∏

i,k

(1 + zi,kt) =
∏
α,k

(1 + xαt)gα,k (8)

We then define
(f ◦ g)(x, ℏ) = f(((−ℏ)kzi,k)i,k, ℏ). (9)

It is clear that this extension of the plethysm still satisfies that (−)◦g is a ring morphism
and that pk ◦ (−) is linear. Thus our extension of the plethysm can be characterized by
saying that it is ℏ-linear in the first variable and setting f ◦ (ℏg) = ℏk(f ◦g) for all f ∈ Λk

and all g ∈ Λ. Note that for f ◦ g to be well-defined, we need g(0) to be concentrated in
strictly positive ℏ-degree [BDPW23, §2.4.6].

In general, computing the plethysm of arbitrary symmetric functions is not an easy
task. Let us note one last property:

Proposition 2.11. Plethysm is associative: for f, g, h ∈ Λ, we have (f ◦g)◦h = f ◦(g◦h).
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2.2. Symmetric sequences and operads
Next, we turn our attention to the ring of symmetric sequences, which can be viewed as
a categorification of the ring of symmetric functions.

Definition 2.12. A symmetric sequence is a family M = {M(n)}n∈N of non-negatively
graded k-modules such that each M(n) is endowed with an action of Sn. Such a sequence
is said to be of finite-type if each M(n) is finite-dimensional.

The (direct) sum M ⊕ N of symmetric sequences M,N is defined term-wise. The tensor
product M ⊗ N is defined as:

(M ⊗ N)(n) :=
⊕

k+l=n

IndSn
Sk×Sl

M(k) ⊗ N(l). (10)

The set of isomorphism classes of term-wise finite dimensional symmetric sequences
forms a monoid for ⊕. We denote by Rk(S∗) (or simply R(S∗) when k = Z) the
Grothendieck group of that monoid, which forms a ring for ⊗. In addition, this ring has
an involution, given by (M(n))n∈N 7→ (M(n) ⊗ sgnn)nN.

Just as the ring of symmetric functions, the ring Rk(S∗) has an additional product:

Definition 2.13. The composition product of symmetric sequences M,N is:

M ◦ N :=
⊕
r≥0

(M(r) ⊗ N⊗r)Sr , (11)

where (−)Sr denotes coinvariants under the action of the symmetric group. The unit I
for this operation is given by I(1) = k and I(n) = 0 for n ̸= 1.

A symmetric sequence M induces a (polynomial) functor FM : gModk → gModk given,
for V ∈ gModk, by:

FM(V ) :=
⊕
n∈N

(
M(n) ⊗ V ⊗n

)
Sn
, (12)

We then have a natural isomorphism of endofunctors FM◦N ∼= FM ◦ FN. An operad is a
monoid in the category of symmetric sequences endowed with the composition product;
if M is an operad, then FM is a monad.
Example 2.14. The prototypical example of operad is the endomorphism operad EndX

of X ∈ gModk, defined by EndX(n) := Hom(Xn, X). The monoid structure is given by
composition of multivariable maps.

2.3. Character map
Finally, let us look at the link between symmetric functions and sequences. This link is
provided by the character map. To define it, we first make the following definition:
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Definition 2.15. Let V be a non-negatively graded k-vector and T : V → V a linear
operator T : V → V of degree 0. Its graded trace is defined as

tr(T ) :=
∑
d≥0

(−ℏ)dt̃r(Td) ∈ k((ℏ)), (13)

where Td : Vd → Vd is the restriction of T to degree d and t̃r(Td) is the usual trace of Td.

Definition 2.16. Let M be a finite-type symmetric sequence. The character of M is
the symmetric function ch(M) ∈ Λ̂((ℏ)) ⊗ k whose projection to Λr((ℏ)) ⊗ k, for r ≥ 1
is defined as the trace of the linear map FM (kr) → FM (kr) (with k considered as
concentrated in degree 0) induced by the diagonal matrix diag(x1, . . . , xr) acting on kr.

Given a representation M of Sn, we can view it as a symmetric sequence by setting
M(n) = M and M(k) = 0 for k ̸= n. The character of the representation M is then defined
as the character of the associated symmetric sequence. Note that it is homogeneous of
polynomial degree n in the xi, and thus belongs to the subspace Λn((ℏ)) ⊗k ⊂ Λ̂((ℏ)) ⊗k.
Example 2.17. Let M = triv2 be the trivial representation of S2. Then FM (kr) ⊂ (kr)⊗r

is spanned by symmetric binary tensors, and diag(x1, . . . , xr) has eigenvalues {xixj | 1 ≤
i, j ≤ r} (all with multiplicity one), so that ch(triv2) = h2. This generalizes easily: the
character of the trivial representation of Sn satisfies ch(trivn) = hn. On the other hand,
if sgnn is the sign representation of Sn, then we get ch(sgnn) = en.
Example 2.18. Recall that the irreducible representations of Sn are indexed by partitions
of weight n (see [FH91, Section 4.2]). For a partition λ, we denote the corresponding
irreducible representation, called a Specht module, by Sλ. We have ch(Sλ) = sλ.
Example 2.19. Recall the involution ω from (2). Then for a representation M of Sn, one
has ω(ch(M)) = ch(M ⊗ sgnn).

Theorem 2.20 ([Mac95, (7.3)]). The character map is an isomorphism of rings R(S∗) ∼=
Λ̂((ℏ)).

Note that not every symmetric function corresponds to a genuine representation. For
example, p2 = h2 − e2 is the character of the virtual representation triv2 ⊖ sgn2.

The character map not only preserves the ring structure, but also the additional
structure we have defined. By Example 2.17, we see that under the character map,
the involution ω corresponds precisely to the involution given by tensoring arity-wise
by the sign representation, introduced above. The relationship between plethysm and
composition product is given by the following proposition.

Proposition 2.21. For finite-type symmetric sequences M,N such that N(0) is concen-
trated in positive degree, one has:

ch(M ◦ N) = ch(M) ◦ ch(N). (14)

Proof. The idea of the proof in the non-graded case is sketched in [Mac95, Appendix
A, Eq. (7.3)], so let us adapt this idea to the graded case. Note that the definition
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in [Mac95] uses invariants rather than coinvariants for the polynomial functors, but as
we work over a field of characteristic zero, the two are isomorphic.

We show the identity by proving that it holds after projection to Λr((ℏ)), for any
r ≥ 1. For M and N symmetric sequences, let FM,FN : Modk → Modk be the respective
associated functors. By the linearity of the composition product and plethysm in the
first variable, we can assume that M is concentrated in degree 0. Let (x) denote the
diagonal endomorphism of kr with eigenvalues x1, . . . , xr. Writing α = (α1, . . . , αr) for a
multi-index, we have by definition of the character map that that

ch(N)(x) =
∑
α,k

(−ℏ)kdα,kx
α,

where dα,k is the dimension of the degree k part of the eigenspace of FN((x)) corresponding
to the eigenvalue xα. For each k ≥ 0, let sk := dim FNk

(kr) and define variables
y1,k, . . . , ysk,k, by

sk∏
i=1

(1 + yi,kt) =
∏
α

(1 + xαt)dα,k .

By diagonalizing each FNk
((x)), we can find invertible ϕk ∈ Homk(ksk ,FNk

(kr)) such
that ϕ−1

k ◦ FNk
((x)) ◦ ϕk = (yk) : ksk → ksk , where we by abuse of notation write

(yk) := diag(y1,k, . . . , ysk,k). Letting ks denote the graded vector space given by ksk in
degree k, we define ϕ ∈ HomQ(ks,FN(kr)) so that its degree k part is ϕk. This means
that ϕ−1 ◦ FN((x)) ◦ ϕ = (y), where we again, by abuse of notation, write (y) for the
linear map ks → ks is (yk) when restricted to degree k. By definition of the character
map, we thus have

ch(M ◦ N)(x) = tr
(
FM(FN((x)))

)
= tr

(
FM(ϕ ◦ (y) ◦ ϕ−1)

)
= tr

(
FM(ϕ) ◦ FM((y)) ◦ FM(ϕ−1)

)
= tr

(
FM((y))

)
=
∑
k≥0

(−ℏ)k tr
(
FM((y))k

)
= ch(M)

(
((−ℏ)kyi,k)i,k

)
=
(
ch(M) ◦ ch(N)

)
(x).

The first equality is by definition of the composition product and the character map; the
last one is by definition of the plethysm. All the other steps are straightforward except
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the second to last. To justify it, note that if we forget ℏ,

ch(M)
(
(yi,j)i,j

)
= tr

(
FM ((yi,j)) ↷

⊕
n≥0

M(n) ⊗Sn (
⊕

j

ksj )⊗n
)

= tr
(

FM ((yi,j)) ↷
⊕
n,k

( ⊕
j1+···+jn=k

M(n) ⊗ ksj1 ⊗ · · · ⊗ ksjn
)
/Sn

)
=
∑

k

tr
(

FM ((yi,j))k ↷
⊕

n

( ⊕
j1+···+jn=k

M(n) ⊗ ksj1 ⊗ · · · ⊗ ksjn
)
/Sn

)
.

To recover ℏ, note that if we substitute yi,j by (−ℏ)jyi,j in the resulting polynomial, then
we multiply each monomial by (−ℏ) to the power j1 + · · · + jn. The kth summand is
thus multiplied by (−ℏ)k, which gives the desired result.

Example 2.22. For d ≥ 2, let Ed denote the little d-disks operad, which is the topological
operad such that Ed(r) consists of r unit disks embedded in the unit disk by translations
and positive rescalings with disjoint interiors (see Figure 2 for an example of an element).
The homology H∗(Ed,Q) is isomorphic to the operad of Poisson d-algebras, i.e., algebras
equipped with a graded commutative product and a Lie bracket of degree d − 1. As
a symmetric sequence, uPoisd

∼= uCom ◦ Lied, where Lied is the (d − 1)-fold operadic
suspension of the Lie operad.

We have uCom(n) = trivn for n ≥ 0, so ch(uCom) =
∑

n≥0 hn = exp(
∑

n≥1 pn/n).
On the other hand, Lied(n) = Lie(n) ⊗ sgn⊗(d−1)

n [(n− 1)(d− 1)]. Thanks to [BDPW23,
Remark 2.3.8] (see also Witt’s formula [Per97, Corollary 5.3.5]), we have:

ch(Lie) =
∑
n≥1

−µn

n
log(1 − pn) =

∑
n,k≥1

µn

n
· p

k
n

k
, (15)

where µn is the Möbius function. We thus get (using ω(pn) = (−1)n−1pn):

ch(Lied) = (−1)dℏ1−d
∑
n≥1

µn

n
log(1 + (−1)dℏ(d−1)npn). (16)

Therefore:

log ch(Poisd) =
(∑

k≥1

pk

k

)
◦
(

(−1)dℏ1−d
∑
n≥1

µn

n
log(1 + (−1)dℏ(d−1)npn)

)
= (−1)d

∑
n,k≥1

ℏ(1−d)k µn

nk
log(1 + (−1)dℏ(d−1)nkpnk)

= (−1)d
∑
m≥1

∑
n|m

ℏ(1−d)m/nµn

m
log(1 + (−1)dℏ(d−1)mpm).

(17)

If d = 1, using
∑

n|m µn = 0 for m > 1, then we get ch(uPoisd) = 1/(1−p1) =
∑

n≥0 p
n
1 =∑

n≥0 ch(Q[Sn]), which is consistent with the isomorphism of symmetric sequences
uPois1 ∼= uAss (reinterpretation of the PBW theorem). If d = 2 and we set ℏ = 1, then
we recover the computation of [BDPW23, Proposition 2.3.7] (witnessing that the Koszul
complex of Com is acyclic).
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Figure 2: An element of E2(3).

3. Bisymmetric functions and relative operads
We now introduce relative operads, a special kind of two-colored operads whose best-
known representatives are the Swiss-Cheese operads. We mimic the definitions of the
previous sections to define a notion of relative plethysm, which models the composition
product of relative operads. We also compare our definition with a related notion
introduced by Koike [Koi89].

3.1. Bisymmetric pairs and plethysm
Definition 3.1. A bisymmetric function is an element f̄ = f̄(x, y) in the ring Λx,y :=
Λx ⊗ Λy (see Notation 2.2). We will also consider elements of the completed ring
Λ̂x,y := Λ̂x ⊗̂ Λ̂y as well as in the rings of formal Laurent series Λx,y((ℏ)) and Λ̂x,y((ℏ)).
Notation 3.2. Given f ∈ Λ, we write f(x) := f ⊗ 1 ∈ Λx,y and f(y) := 1 ⊗ f ∈ Λx,y.

It follows from Proposition 2.6 that the families (en(x), en(y))n≥1 and (hn(x), hn(y))n≥1
are each a set of algebraically independent generators of Λx,y, that (pn(x), pn(y))n≥1 is a
set of algebraically independent generators of Λx,y ⊗ Q and that (sλ(x)sµ(y))λ,µ is an
additive basis of Λx,y. Note also that the involution ω : Λ → Λ induces an involution
ω ⊗ ω on Λx,y.
Definition 3.3. A relative bisymmetric function is a pair (f̄ , f) ∈ Λx,y × Λy.
Definition 3.4. Given relative bisymmetric functions (f̄ , f), (ḡ, g) ∈ Λx,y × Λy, the
relative plethysm is defined by:

(f̄ , f) ◦ (ḡ, g) :=
(
f̄ ◦̄ (ḡ, g), f ◦ g

)
. (18)

The symmetric function f ◦ g ∈ Λy is the usual plethysm of f and g. The bisymmetric
function f̄ ◦̄ (ḡ, g) ∈ Λx,y is defined as follows. Let g =

∑
β gβy

β and ḡ =
∑

α,β ḡα,βx
αyβ

(Notation 2.3) and assume that ḡα,β, gβ ≥ 0 for all α, β. Introduce temporary variables
zi, wj such that, for a placeholder t,∏

i

(1 + zit) =
∏
α,β

(1 + xαyβt)ḡα,β ,
∏

j

(1 + wjt) =
∏
β

(1 + yβt)gβ ; (19)

12



Then we have
(f̄ ◦̄ (ḡ, g))(x1, . . . ; y1, . . . ) := f̄(z1, . . . ;w1, . . . ). (20)

As for the usual plethysm, this definition extends to functions with negative coefficients
using the characterizations below, and also extends to the completion of the ring as well
as power series.

Proposition 3.5. For any pair (ḡ, g) ∈ Λx,y × Λy, the map f̄ 7→ f̄ ◦̄ (ḡ, g) is an
endomorphism of the ring Λx,y.

Proof. This is immediate. For example, let us show that the map is additive. Given
f̄ , f̄ ′ ∈ Λx,y and (ḡ, g) ∈ Λx,y × Λy, with the notation of (19), we have

(f̄ + f̄ ′) ◦̄ (ḡ, g) = (f̄ + f̄ ′)(z1, . . . ;w1, . . . )
= f̄(z1, . . . ;w1, . . . ) + f̄ ′(z1, . . . ;w1, . . . )
= f̄ ◦̄ (ḡ, g) + f̄ ′ ◦̄ (ḡ, g).

Note that there are two involutions ωx, ωy on Λx,y analogous to ω from Equation (2):
one that is defined by ωx(hn(x)) = en(x) and ωx(hn(y)) = hn(y), and another that is
defined similarly. These behave with respect to ◦̄ similarly to Equation (5).

Lemma 3.6. Suppose that f̄ ∈ Λx,y is of the form f̄ = f(y) for some f ∈ Λy. Then for
any pair (ḡ, g), we have that f(y) ◦̄ (ḡ, g) = (f ◦ g)(y).

Proof. Since f̄ does not depend on the variables xi, then ḡ is irrelevant for computing
f̄ ◦̄ (ḡ, g). The definition of the wj (19) match those used to define f ◦ g.

Thus by Proposition 2.9:

Corollary 3.7. For any n ≥ 0, the map (ḡ, g) 7→ pn(y) ◦̄ (ḡ, g) is an endomorphism and:

pn(y) ◦̄ (ḡ, g) = g(yn
1 , y

n
2 , . . . ) = (g ◦ pn)(y). (21)

In particular, pk(y) ◦̄ (ḡ, pl) = pkl(y) for all k, l ≥ 0 and ḡ ∈ Λx,y.

On the other hand, if the first variable only depends on x, then we get:

Proposition 3.8. For any n ≥ 0, the map (ḡ, g) 7→ pn(x) ◦̄ (ḡ, g) is an endomorphism
and:

pn(x) ◦̄ (ḡ, g) = ḡ(xn
1 , x

n
2 , . . . ; yn

1 , y
n
2 , . . . ) = ḡ ◦̄ (pn(x), pn(y)). (22)

In particular, pk(x) ◦̄ (pl(x), g) = pkl(x) and pk(x) ◦̄ (pl(y), g) = pkl(y) for all k, l ≥ 0 and
ḡ ∈ Λx,y.

Proof. Almost identical to the proof of Proposition 2.9, which itself follows immediately
from the definition of the plethysm (see Example 2.10 for n = 2).

13



Since the family (pn(x), pn(y))n≥1 forms a set of algebraically independent generators
for Λx,y, the above properties completely characterize the relative plethysm and allow
to define f̄ ◦̄ (ḡ, g) even when ḡ or g have negative coefficients, or when they are power
series (with respect to ℏ), assuming that that (g, ḡ) vanish at 0.

Relative plethysm satisfies the following associativity property:

Proposition 3.9. Let f̄ , ḡ, h̄ ∈ Λx,y and g, h ∈ Λy. Then we have the equality:(
f̄ ◦̄ (ḡ, g)

)
◦̄ (h̄, h) = f̄ ◦̄

(
ḡ ◦̄ (h̄, h), g ◦ h

)
. (23)

Proof. Given the two previous results and the fact that (pn(x), pn(y))n≥1 is a set of
algebraically independent generators for Λx,y, it suffices to check the relation for f̄ = pn(x)
or pn(y), ḡ = pm(x) or pn(y), and g = pk(y), which is straightforward. The result then
follows from (21) and (22).

Let us now compare our definition of relative plethysm with a related notion introduced
by Koike [Koi89] to study the characters of tensor products of representations.

Definition 3.10 ([Koi89, p. 79]). Let f̄ , ḡ ∈ Λx,y be bisymmetric functions and write
ḡ =

∑
α,β gαβx

αyβ. Let si, ti be temporary variables such that, for a placeholder z,∏
i

(1 + siz) =
∏
α,β

(1 + xαyβz)gαβ ,
∏

i

(1 + tiz) =
∏
α,β

(1 + xβyαz)gαβ . (24)

Then the Koike plethysm is given by:

(f ◦K g)(x1, . . . ; y1, . . . ) := f(s1, . . . ; t1, . . . ). (25)

The operation ◦K is clearly different from the operation ◦̄ that we introduced above.
While ◦K takes as input two bisymmetric functions, ◦̄ takes as input a bisymmetric
function and a relative bisymmetric function. Moreover, ◦K satisfies a kind of symmetry
between x and y, whereas our notion does not (and cannot, since it is supposed to model
the relative composition product, for which the two colors play very different roles).
Nevertheless, we have the following equality:

Proposition 3.11. If f̄ = f(x) for some f ∈ Λx, then we have that

f(x) ◦̄ (ḡ, 0) = f(x) ◦K ḡ. (26)

3.2. Relative operads and relative composition product
Definition 3.12. A bisymmetric sequence is a family M̄ = {M̄(m,n)}m,n∈N of graded
k-modules such that each M̄(m,n) is endowed with a right action of Sm × Sn.

Given bisymmetric sequences M̄, N̄, the direct sum M̄ ⊕ N̄ is defined term-wise. The
tensor product is defined by:

(M̄ ⊗ N̄)(m,n) :=
⊕

k+l=m

⊕
k′+l′=n

IndSm×Sn
Sk×Sl×Sk′ ×Sl′

M̄(k, k′) ⊗ N̄(l, l′). (27)
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We let Rk(S∗×S∗), or R(S∗×S∗) when k = Z, be the Grothendieck group of the monoid
(for ⊕) of isomorphism classes of term-wise finite dimensional bisymmetric sequences,
which forms a ring when endowed with ⊗.

Definition 3.13. A relative bisymmetric sequence is a pair (M̄,M) where M is a symmetric
sequence and M̄ is a bisymmetric sequence.

Definition 3.14. Given relative bisymmetric sequences (M̄,M) and (N̄,N), the relative
composition product is defined by:

(M̄,M) ◦ (N̄,N) :=
(
M̄ ◦̄ (N̄,N), M ◦ N

)
. (28)

The symmetric sequence M,N is the usual composition product of M and N. The
bisymmetric sequence M̄ ◦̄ (N̄,N) is (where N is viewed as concentrated in bi-arity (0,_)):

M̄ ◦̄ (N̄,N) :=
⊕

m,n∈N

(
M̄(m,n) ⊗ N̄⊗m ⊗ N⊗n

)Sm×Sn . (29)

Let M̄ be a bisymmetric sequence. The induced (polynomial) functor FM̄ : Modk ×
Modk → Modk is given, for V,W ∈ Modk, by:

FM̄(V,W ) :=
⊕

m,n∈N

(
M̄(m,n) ⊗ V ⊗m ⊗W⊗n

)
Sm×Sn

. (30)

In particular, a relative bisymmetric sequence (M̄,M) induces an endofunctor:

FM̄,M : Modk × Modk → Modk × Modk, (V,W ) 7→
(
FM̄(V,W ),FM(W )

)
. (31)

We then have a natural isomorphism of endofunctors FM̄,M ◦ FN̄,N
∼= FM̄◦̄(N̄,N), M◦N.

A relative operad is a monoid in the category of relative bisymmetric sequences for
the relative composition product. If (M̄,M) is a relative operad, then FM̄,M is a monad.
The terminology comes from [Vor99], who defined them as pairs (Q,P) where P is a
plain operad and Q is an operad in the category of right P-modules. Such operads are
sometimes called “Swiss-Cheese type operads,” owing to their original appearance. They
can also be defined as colored operads Q with two colors, e.g., red and blue, such that
operations with a red output may only have red inputs, and operations with blue output
may have both red and blue inputs.
Example 3.15. The prototypical example of a relative operad is the relative endomor-
phism operad (EndX,Y ,EndY ) of a pair (X,Y ) ∈ Modk × Modk, where EndY is from
Example 2.14 and EndX,Y (m,n) := Hom(Xm × Y n, X).

3.3. Character map for bisymmetric sequences
Let us now relate bisymmetric sequences and functions.
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Definition 3.16. Let M̄ be a finite-type bisymmetric sequence. The character of M̄ is
the bisymmetric function:

ch(M̄) ∈ Λ̂x,y((ℏ)) ⊗ k, (32)

whose projection onto Λr ⊗ Λs ⊗ k (which consists in polynomials in r + s variables,
symmetric in the first r and symmetric in the last s), for r, s ≥ 1, is the graded trace
(see Definition 2.15) of the linear map FM̄d

(kr, ks) → FM̄d
(kr, ks) induced by the pair of

diagonal matrices
(
diag(x1, . . . , xr), diag(y1, . . . , ys)

)
.

Proposition 3.17. The character map is an isomorphism of rings between R(S∗ × S∗)
and Λ̂x,y((ℏ)).

Proof. This follows from Theorem 2.20 and the easily checked fact that if a (Sm × Sn)-
representation M̄ is of the form M ⊗M ′, where M is a representation of Sm and M ′ is
a representation of Sn, then the character of M̄ is the product of the characters of M
and M ′, i.e., ch(M̄)(x, y) = ch(M)(x) · ch(M ′)(y).

In order to illustrate this notion, let us compute the following important example.
Example 3.18. Let G be a finite group and R := Q[G] its regular representation. Let
{V1, . . . , Vk} be the irreducible representations of G. Then by Maschke’s theorem [Eti+11,
Theorem 4.1.1], we have

Q[G] ∼=
⊕

i

End(Vi) =
⊕

i

V ∗
i ⊗ Vi. (33)

Note that the cited theorem only states that this is an isomorphism of left G-modules,
but it is clear that the map is an isomorphism of bimodules. Moreover, V ∗

i viewed as a
right module (by the inverse of the transpose) is isomorphic to Vi. For G = Sn, if we
apply the character map we thus get the following result:

ch(Q[Sn]) = Rn(x, y) :=
∑
λ ⊣ n

sλ(x)sλ(y). (34)

We now get to the main result of this section.

Theorem 3.19. Given a bisymmetric sequence M̄ and a relative bisymmetric sequence
(N̄,N), we have that

ch
(
M̄ ◦̄ (N̄,N)

)
= ch(M̄) ◦̄

(
ch(N̄), ch(N)

)
. (35)

Proof. The proof is similar to that of Proposition 2.21. We deal with the case where
both sequences are concentrated in degree zero; the general case follows (just like how we
pulled (−ℏ) out of the polynomials in Proposition 2.21). We show that, for any r, s ≥ 1,
the identity holds when projecting to Λr ⊗Λs. Let (x) : kr → kr and (y) : ks → ks denote
the diagonal endomorphisms with eigenvalues x1, . . . , xr and y1, . . . , ys, respectively. For
multi-indices α, β we then have

ch(N̄)(x, y) =
∑
α,β

dα,βλ
αµβ,
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where dα,β is the dimension of the eigenspace of FN̄((x), (y)) : FN̄(kr, ks) → FN̄(kr, ks)
corresponding to the eigenvalue xαyβ. As before, we also have that

ch(N̄)(y) =
∑

β

dβy
n,

where dβ is the dimension of the eigenvalue of FN((y)) : FN(ks) → FN(ks) corresponding
to the eigenvalue yβ. Letting t := dim FN̄(kr,ks) and u := dim FN(ks), we define sets of
variables z1, . . . , zt and w1, . . . , wu by∏

i

(1 + zit) =
∏
α,β

(1 + xαyβ)dα,β ,
∏

j

(1 + wjt) =
∏
β

(1 + yβt)dβ .

Again, we can diagonalize FN̄((x), (y)) and find isomorphisms ϕ ∈ Homk(kt,FN̄(kr, ks))
and ψ ∈ Homk(ku,FN̄(ks)) such that ϕ−1 ◦FN̄((x), (y))◦ϕ = (z) and ψ−1 ◦FN((y))◦ψ =
(w). Recall that

F(M̄,0) ◦ F(N̄,N) = F(M̄◦̄(N̄,N),0◦N),

which means in particular that FM̄◦̄(N̄,N) is the functor given on (V,W ) by

FM̄(FN̄(V,W ),FN(W ))

and similarly on morphisms. Applying this, we get

ch(M̄ ◦ (N̄,N))(x, y) = tr(FM̄◦̄(N̄,N)((x), (y)))
= tr(FM̄(FN̄((x), (y)),FN((y))))
= tr(FM̄(ϕ ◦ (z) ◦ ϕ−1, ψ ◦ (w) ◦ ψ−1))
= tr(FM̄(ϕ, ψ) ◦ FM̄((z), (w)) ◦ FM̄(ϕ, ψ)−1)
= tr(FM̄((z), (w)))
= ch(M̄)(z, w)
= ch(M̄) ◦̄ (ch(N̄), ch(N))(x, y),

where we have used the definition of ◦̄ in the last step.

Remark 3.20. Given bisymmetric sequence M̄, N̄, the Koike plethysm (Definition 3.10) of
ch(M̄) and ch(N̄) is the character of the bisymmetric sequence given by:

M̄ ◦K N̄ :=
⊕

m,n∈N

(
M̄(m,n) ⊗ N̄⊗m ⊗ (N̄op)⊗n

)
Sm×Sn

, (36)

where N̄op(m,n) := N̄(n,m).
Remark 3.21. We only deal with relative operads here as they are the ones that we need
for our applications. However, it would be rather easy to adapt our results to the case or
arbitrarily colored operads.
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4. Bisymmetric functions and PROPs
A PROP is an object which encodes operations that are allowed to have several inputs
and several outputs. The underlying object of a PROP is a symmetric bimodule, i.e., a
family of representations of the groups Sop

m × Sn; a PROP is a monoid in the category
of symmetric bimodules for the “box product” (vertical composition). In this section, we
construct an operation on bisymmetric functions which decategorifies the box product
under the character map. However, we must make a little detour, as PROPs must be
saturated symmetric bimodules. We first define the notion of saturation for bisymmetric
functions and construct the box product of bisymmetric functions using this notion.

References for claims on PROPs below include [Val07].

4.1. PROPs
Definition 4.1. A symmetric bimodule is a family M = {M(m,n)}n,m∈N of graded k-
modules such that each M(m,n) is endowed with a left Sm-action and a right Sn-action.
We call such a M(m,n) a (Sm,Sn)-bimodule.

Of course, this definition is equivalent to the notion of bisymmetric sequences from
Section 3.1 since a left action can be turned into a right action and conversely. However,
we will use the term “symmetric bimodule” to emphasize a difference of points of view.
Bisymmetric sequences are the underlying objects of relative operads, whose operations
have multiple inputs of two colors, and a single output. On the other hand, symmetric
bimodules are the underlying objects of PROPs, whose operations have multiple inputs
and multiple outputs, all of a single color.

Any symmetric bimodule has an associated bisymmetric sequence, which we will denote
by M as well. That bisymmetric sequence consists of operations with two-colored inputs:
the inputs of the first color correspond to outputs of the initial symmetric bimodule,
while inputs of the second color correspond to inputs of the initial symmetric bimodule.
Given a symmetric bimodule M, we can therefore define its character ch(M) to be the
character of the corresponding bisymmetric sequence. Note that with our conventions,
the x-variables of the character of a symmetric bimodule corresponds to the “outputs”
of the symmetric bimodule, while the y-variables of the character correspond to the
“inputs”.
Remark 4.2. A symmetric sequence M can be seen as a symmetric bimodule by setting
M(1, n) = M(n) and M(m,n) = 0 for m ≠ 1. We then have ch(M)(x, y) = p1(x) ch(M)(y).

The analogue of the composition product of operads is the box product of PROPs.

Definition 4.3 ([Val07, Theorem 1]). Let M,N be symmetric bimodules. Their box
product M ⊠ N is the symmetric bimodule defined by:

(M⊠N)(m,n) =
⊕
N≥1

(⊕
a,b≥1

⊕
k̄,l̄,̄ı,ȷ̄

k[Sm] ⊗Sl̄
M(l̄, k̄) ⊗Sk̄

k[SN ] ⊗Sȷ̄ N(ȷ̄, ı̄) ⊗Sı̄ k[Sn]
)
/∼,

(37)
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where the sum runs over a-tuples k̄, l̄ and b-tuples ı̄, ȷ̄ such that |l̄| = m, |̄ı| = n, and
|k̄| = |ȷ̄| = N . We set M(l̄, k̄) =

⊗a
p=1 M(lp, kp) and Sl̄ =

∏a
p=1 Slp ⊂ S|l̄| (and similarly

for the others). The equivalence relation ∼ is defined, for θ ∈ Sm, ω ∈ Sn, σ ∈ SN ,
ν ∈ Sa, and τ ∈ Sb:

θ ⊗
b⊗

q=1
mq ⊗ σ ⊗

a⊗
p=1

np ⊗ ω ∼ θτ−1
l̄

⊗
b⊗

q=1
mτ−1(q) ⊗ τk̄σνȷ̄ ⊗

a⊗
p=1

nν(p) ⊗ ν−1
ı̄ ω, (38)

where τl̄, τk̄, νı̄, νȷ̄ are the block permutations associated to τ, ν and the partitions k̄, l̄, ı̄, ȷ̄.

While the previous definition is convenient to work with when we are interested in the
representations of symmetric groups, it is not necessarily the most intuitive. Just like
the composition product of operads can be reformulated in terms of two-level trees, the
box product of PROPs can be reformulated in terms of two-level directed graphs, see
Figure 3.

x y

x′ y′

2 1 5 4 3 6

2 3 4 1 5

∈ (M ⊠ N)(5, 6).

Figure 3: An element of the box product M ⊠ N, where x ∈ M(2, 4), y ∈ M(3, 2),
x′ ∈ N(2, 3), and y′ ∈ N(3, 2).

The box product is associative, but it is not unital. Consider the symmetric sequence I
viewed as a symmetric bimodule. In general, M ⊠ I is not equal to M.

Definition 4.4. Let M be a symmetric bimodule. The saturation of M is the symmetric
bimodule

S(M) :=
⊕
n≥1

(M⊗n)Sn , (39)

where the tensor product is given by horizontal concatenation (i.e., Day convolution).

Note that if M is output-reduced (i.e., M(m,n) = 0 if m = 0) then S(M) ∼= I ⊠ M and if
it is input-reduced (i.e., M(m,n) = 0 if n = 0) then similarly S(M) ∼= M ⊠ I. Saturation
is an idempotent operation, that is, S(S(M)) = S(M) for all M. A symmetric bimodule is
called saturated if it is isomorphic to its saturation. The category of saturated symmetric
bimodule is symmetric monoidal for the box product, with unit S(I) given by:

S(I)(n, n) =
{
k[Sn], if m = n;
0, otherwise.

(40)
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Thanks to Example 3.18, we thus have that S(I)(n, n) ∼=
⊕

λ ⊣ n S
λ ⊗ Sλ as a (Sn × Sn)-

representation.
A PROP is a monoid in the category of saturated symmetric bimodules for the box

product.
Example 4.5. The prototypical example of a PROP is the endomorphism PROP EndX

where EndX(m,n) = Hom(Xn, Xm).

4.2. Character of the saturation and the box product
The following proposition gives the relationship between the saturation of a symmet-
ric bimodule and the relative composition product of Section 3.2. Let Com0

c be the
bisymmetric sequence given by Com0

c(n, 0) := trivn for n > 0 and Com0
c(n,m) = 0 for

m ̸= 0 or (m,n) = (0, 0). The following proposition is a reformulation of the description
from [Val07, p. 4874].

Proposition 4.6. Let M be a symmetric bimodule viewed as a bisymmetric sequence.
Then S(M) = Com0

c ◦̄ (M, 0) as a bisymmetric sequence.

Note that the character of Com0
c is given by:

ch(Com0
c) =

∑
n≥1

hn(x) = exp
(∑

n≥1

pn(x)
n

)
− 1 ∈ Λ̂x,y. (41)

Definition 4.7. The saturation of a bisymmetric function f̄ such that f̄(0, 0) is concen-
trated in positive ℏ-degree is given by:

S(f̄) :=
∑
n≥1

hn(x) ◦̄ (f̄ , 0). (42)

Note that S(f̄) = exp(f̄) − 1, where exp is a 2-variable version of the plethystic
exponential [BDPW23, Definition 2.3.9].

Corollary 4.8. The character of the saturation of a finite-type symmetric bimodule M
such that M(0, 0) is concentrated in positive degrees is given by:

ch(S(M)) = S(ch(M)). (43)

Example 4.9. We can use this result compute the saturation of the symmetric bimodule I.
Its character is simply given by ch(I) = h1(x)h1(y) =

∑
i,j xiyj . We thus have that

ch(S(I)) =
∑
n≥1

hn(x) ◦̄ (h1(x)h1(y), 0) =

=
∑
n≥1

∑
i1≤···≤in
j1≤···≤jn

xi1yj1 · · ·xinyjn =
∏
i,j

(1 − xiyj)−1 − 1. (44)

Comparing this with (34), we recover [Mac95, Chap. I, Eq. (4.3)].

20



Finally, let us provide a formula for the character of the box product of two symmetric
bimodules. Unfortunately, this formula is not as nice as the plethysms defined in the
previous sections, but it is still useful computationally.

To define it, we recall that there is a scalar product on Λx,y, which is given by

⟨pλ(x)pλ′(y), pµ(x)pµ′(y)⟩ := δλ,µδλ′µ′zλzµ, (45)

on the basis {pλ(x)pµ(y)}λ,µ, where zλ :=
∏

i i
mimi! and mi is the number of occurences

of i in the partition λ (and similarly for zµ). If T : Λx,y → Λx,y is a linear map, we
therefore have a well-defined notion of adjoint map T⊥ : Λx,y → Λx,y. If f ∈ Λx,y, we
denote by f⊥ the adjoint of the map given by multiplication by f .
Example 4.10. Note that the scalar product and the adjoint are the canonical extensions of
the corresponding notions on Λ. According to [Mac95, Example 5.3], if f = f(p1, p2, . . . ) ∈
Λ is expressed as a polynomial of power sums, then

p⊥
n (f) = n

∂f

∂pn
(p1, p2, . . . ). (46)

For example, if f = p2
1 + p2, then p⊥

1 (f) = 2p1 and p⊥
2 (f) = 1. These formulas allow

computing the action of pn(x)⊥ and pn(y)⊥ on Λx,y in a similar way. Since f 7→ f⊥ is a
ring morphism, this completely characterizes adjoints.

Recall the bisymmetric function Rn(x, y) from (34), (44). With this, we can define the
box product of bisymmetric functions as follows:

Definition 4.11. Let f̄(x, y), ḡ(x, y) be bisymmetric functions. Their box product f̄ ⊠ ḡ
is the bisymmetric function:

(f̄ ⊠ ḡ)(x, y) :=
(∑

n≥1
(Rn(x′, y′))⊥(S(f̄)(x, y′) S(ḡ)(x′, y)

))
|x′=y′=0. (47)

The idea to use adjoints to model “joining vertices by an edge” is inspired by the proof
of [GK98, Theorem 8.13]. The formula for the box product of bisymmetric functions is
quite a bit more complicated than the formulas for the plethysm and relative plethysm
above, but is still computable. In particular, thanks to [Mac95, Equation (4.1)], we have

Rn(x, y)⊥ =
∑
λ ⊣ n

z−1
λ pλ(x)⊥pµ(y)⊥, (48)

where zλ is defined above and pλ(x)⊥, pµ(y)⊥ can be computed using Equation (46) and
the multiplicativity of f 7→ f⊥.

Theorem 4.12. Let M, N be finite-type symmetric bimodules. The character of their
box product satisfies:

ch(M ⊠ N) = ch(M) ⊠ ch(N). (49)

For the proof, we will need this representation theoretic lemma:
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Lemma 4.13. Let V be a (Sm,Sn)-bimodule and W a (Sp,Sq)-bimodule, for m ≤ p
and n ≤ q. Then

ch(V )⊥ ch(W ) = ch
(

HomSm×Sn(V,ResSp×Sq

(Sm×Sp−m)×(Sn×Sq−n)W )
)
.

Proof. This follows immediately from the analogous statement for one-variable symmetric
functions, see [GK98, Proposition 8.10] (where the adjoint f⊥ is denoted D(f)).

Proof of Theorem 4.12. Let us start by introducing some auxiliary notation. If f̄ ∈ Λx,y,
let us write f̄m,n for the part of bidegree (m,n), f̄m,− for the part of degree m in the
x-variable and similarly f̄−,n for the part of degree n in the y-variable. If f̄ , ḡ ∈ Λx,y,
then in this notation, an equivalent way of writing the definition of their box product is

(f̄ ⊠ ḡ)(x, y) =
∑
N≥1

RN (x′, y′)⊥ (S(f̄)−,N (x, y′) S(ḡ)N,−(x′, y)
)
.

We will use this alternative definition in the proof.
Now note that if either M(m, 0) ̸= 0 or N(0, n) ̸= 0, then these biarities do not

contribute to the box product, so we can, without loss of generality, assume that M is
input-reduced and N is output-reduced. This implies that S(M) = M⊠ I and S(N) = I⊠N,
so since I is concentrated in biarities (n, n), we have

S(M)(m,n) =

⊕
a≥1

⊕
k̄,l̄

k[Sm] ⊗Sl̄
M(l̄, k̄) ⊗Sl̄

k[Sn] ⊗ k[Sn]

 / ∼,

∼=

⊕
a≥1

⊕
k̄,l̄

k[Sm] ⊗Sl̄
M(l̄, k̄) ⊗Sl̄

k[Sn]

 / ∼′

where the equivalence relation ∼′ is defined, for θ ∈ Sm, ω ∈ Sn and τ ∈ Sa, by

θ ⊗m1 ⊗ · · · ⊗ma ⊗ ω ∼′ θτ−1
l̄

⊗mτ−1(1) ⊗ · · · ⊗mτ−1(a) ⊗ τk̄ω.

Similarly, we obtain

S(M)(m,n) ∼=

⊕
b≥1

⊕
ī,j̄

k[Sm] ⊗Sj̄
N(j̄, ī) ⊗Sj̄

k[Sn]

 / ∼′ .

We see that for any N ≥ 1, we have

S(M)(m,N) ⊗SN
k[SN ] ⊗SN

S(N)(N,n)

∼=

⊕
a,b≥1

⊕
k̄,l̄,̄i,j̄

k[Sm] ⊗Sl̄
M(l̄, k̄) ⊗Sl̄

k[SN ] ⊗Sj̄
N(j̄, ī) ⊗Sj̄

k[Sn]

 / ∼′′

22



where ∼′′ is the equivalence relation generated by the equivalence relations in the two
tensor factors. It is easily verified that this is the same equivalence relation as in the
definition of the box product, so we obtain

(M ⊠ N)(m,n) ∼=
⊕
N≥1

S(M)(m,N) ⊗SN
k[SN ] ⊗SN

S(N)(N,n)

∼=
⊕
N≥1

HomSN ×SN
(k[SN ],S(M)(m,N) ⊗ S(N)(N,n))

where in the second step we used the self-duality of the regular representation k[SN ].
Applying Lemma 4.13 and Corollary 4.8, we obtain

ch(M ⊠ N) =
∑
N≥1

Rn(x′, y′)⊥
(

ch (S(M))−,N (x, y′) ch (S(N))N,− (x′, y)
)

= ch(M) ⊠ ch(N).

5. Applications
5.1. Stable twisted cohomology of automorphism groups of free groups
For n ≥ 1, let Fn denote the free group on n generators and let H(n) := H1(Fn,Q). For
any p, q ≥ 0, we consider the Aut(Fn)-representation

Bn(q, p) := HomQ(H(n)⊗q, H(n)⊗p).

These representations assemble into a PROP, inducing a PROP-structure on the collection
of cohomology groups

Hn(q, p) := H∗(Aut(Fn), Bq,p(n)). (50)

Remark 5.1. As shown in [KV23], these cohomology groups actually have more structure:
they form a so-called wheeled PROP, where the wheeled structure is induced by the
duality pairing map Bn(1, 1) → Q.

These cohomology groups have been studied by the second author [Lin22] and several
others (see for example [DV15; Dja19; Ran18]). However, the only part of the coho-
mology which is well-understood is the stable part, as we now recall. There is a group
homomorphism

sn : Aut(Fn) → Aut(Fn+1)

given by extending automorphisms to act trivially on the new generator. Furthermore,
the standard inclusion Fn ↪→ Fn+1 and projection Fn+1 ∼= Fn ∗ Z → Fn induce an
Aut(Fn)-equivariant map

σn : Bn+1(q, p) → Bn(q, p),

where the source is considered an Aut(Fn)-representation via the map sn. We thus get an
induced map (sn, σn)∗ in cohomology, and it follows from [RW17] that for n sufficiently
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large in comparison to the degree, p and q, this map is an isomorphism. For a given n,
the stable part of the cohomology is thus the cohomology in those degrees which lie in
the stable range. Furthermore, we define the stable cohomology of Aut(Fn) with the
coefficients Bn(p, q) as the limit

H∗(Aut(F∞), B∞(q, p)) := lim(· · · → Hn+1(q, p) (sn,σn)∗
−−−−−→ Hn(q, p) → · · · → H1(q, p)).

(51)
Let us write H = H∞ for the (wheeled) PROP formed by the stable cohomology groups.
It turns out that it has a remarkably simple description, obtained by combining the main
result of [Lin22] with [KV23, Theorem 4]:

Theorem 5.2. The wheeled PROP H is isomorphic to the wheeled PROP associated to
Com[1], the shift of the commutative operad.

Remark 5.3. The binary operation generating Com[1] corresponds to a class typically
denoted h1 ∈ H(1, 2), which was introduced by Kawazumi [Kaw05].

A natural question to ask is how, for any p, q ≥ 0, H(q, p) decomposes into irreducible
representations of Sq × Sp.

Theorem 5.4 ([Lin22, Theorem A]). For p, q ≥ 0, let P(q, p) be the set of partitions of
{1, . . . , p} with at least q parts, q of which are labeled 1, . . . , q and the remaining parts
unlabeled, with the natural action of Sp × Sq. Moreover, let P(q, p) = Q{P(q, p)}[p− q]
be the symmetric bimodule defined by this set of partitions Then H ∼= ω(P).

Consider the ungraded symmetric bimodule Q, defined by:

Q(q, p) =
{

trivp if q ∈ {0, 1}, p ≥ 1,
0 otherwise.

ch(Q) =
∑
p≥1

(hp(y) + hp(y)h1(x)). (52)

Then P(q, p) =
(
S(Q)

)
(q, p)[p− q]. If we define a “regrading” morphism Ψ from Λ̂x,y to

its ring of Laurent series by:

Ψ : Λ̂x,y → Λ̂x,y((ℏ)),
hq(x) 7→ (−ℏ)−qhq(x),
hp(y) 7→ (−ℏ)php(y).

(53)

In other words,

Ψ(f(x1, . . . ; y1, . . . )) = f(−ℏ−1x1, . . . ; −ℏy1, . . . ) = f ◦̄ (−ℏ−1h1(x),−ℏh1(y)). (54)

Then we have by Corollary 4.8 that:

ch(H) = ωΨ(ch(S(Q))) = ωΨ
(∑

n≥1
hn(x) ◦̄

(∑
p≥1

(
hp(y) + hp(y)h1(x)

)))
. (55)

24



The sub-PROP of H generated by the binary operation h1 ∈ H(1, 2) has been studied
by Emprin–Hunter–Livernet–Vespa–Zakharevich [EHLVZ24]. Let us denote it by H̃.
If we let P̃ denote the symmetric sub-bimodule of P generated by partitions with no
unlabeled parts, and P = {P(q, p)[p − q]} its graded version, then we have H̃ = ω(P̃).
Let us also define Q̃ by:

Q̃(q, p) =
{

trivp if q = 1, p ≥ 1,
0 otherwise.

ch(Q̃) =
∑
p≥1

hp(y)h1(x). (56)

We have again that P̃ is a regraded version of S(Q̃), so by Corollary 4.8, we have

ch(H̃) = ωΨ(ch(S(Q̃))) = ωΨ
(∑

n≥1
hn(x) ◦̄

(∑
p≥1

hp(y)h1(x)
))

. (57)

Note that this sum is infinite even in a fixed degree; one has to consider a fixed pair
(arity, degree) to get a finite sum. The result of this computation in low degree and low
arity is included in Section A.

5.2. Stable algebraic cohomology of the IA-automorphism group
The IA-automorphism group of Fn, which we denote by IAn, is the kernel of the action of
Aut(Fn) on the abelianization H1(Fn,Z). The stable rational cohomology of this group
has been studied by the second author [Lin24] and in a similar way by Habiro–Katada
[HK23]. The homomorphism sn : Aut(Fn) → Aut(Fn+1) restricts to a homomorphism

sn : IAn → IAn+1,

which we denote by the same symbol, for simplicity. As above, we may define H∗(IA∞,Q).
However, it should be noted that the cohomology does not stabilize in the same sense
as above, i.e. s∗

n is not an isomorphism in any range n ≫ ∗. Instead, the short exact
sequence

1 → IAn → Aut(Fn) → GLn(Z) → 1,

induces an action by GLn(Z) on the cohomology H∗(IAn,Q) and is conjectured that
with respect to this action, the cohomology stabilizes in the sense of representation
stability [CF13, Section 6.2]. The first piece of evidence for this is that

H1(IAn,Q) ∼= HomQ(Λ2H(n), H(n)),

as representations of GLn(Z), which was proven by Kawazumi [Kaw05]. In particular,
H1(IAn,Q) is isomorphic to a representation whose GLn(Z)-action is the restriction of a
GLn(Q)-action. In other words, it is an algebraic GLn(Z)-representation. As part of the
conjecture of representation stability, it is conjectured that for n ≫ ∗, H∗(IAn,Q) is an
algebraic representation.

A second step in trying to understand the stable cohomology groups is to study

H∗
A(IAn,Q) := Im(Λ∗H1(IAn,Q) ⌣−→ H∗(IAn,Q)),
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which is called the Albanese cohomology of IAn. By the result of Kawazumi, this is a
quotient of the exterior algebra on HomQ(Λ2H(n), H(n)) and in particular an algebraic
representation. Katada [Lin24] proved that for n ≫ ∗, we have

H∗
A(IAn,Q) ∼= Λ∗ (HomQ(Λ2H(n), H(n))

)
/I,

where I is an explicit quadratic ideal (as the specific description will not be relevant here,
we refer to [Lin24] for details). Below, we apply the results of this paper to decompose this
graded GLn(Q)-representation into irreducibles. Such a decomposition can be obtained
in degree 1 using the result of Kawazumi [Kaw05] above, and the decompositions where
computed by Pettet [Pet05] in degree 2 and by Katada [Kat22] in degree 3.

A next step in trying to understand H∗(IAn,Q) is to study its algebraic part. For any
GLn(Z)-representation V , we define its algebraic part as

V alg :=
(

colim
W ⊆V

W algebraic

W
)

⊆ V.

We may also define H∗(IA∞,Q)alg in a similar way as above. If H∗(IAn,Q) is finite
dimensional, in a range n ≫ ∗, then the we have [Lin24]:

H∗(IA∞,Q)alg ∼= Q[y4, y8, . . .] ⊗H∗
A(IA∞,Q), (58)

where yi is a class of degree i which is invariant under the action of GL∞(Z) :=
colimn GLn(Z) (see also [HK23] for a similar, but slightly weaker, result). In particular,
this tells us that if the cohomology is stably finite dimensional and we want to decompose
H∗(IA∞)alg into irreducible representations, we only need to decompose H∗

A(IA∞,Q).
This is thus the goal of this section.

To see how the results of this paper are related, let us recall that the irreducilbe
representations of GLn(Q) are indexed by bipartitions, i.e. pairs (λ, µ), where λ := (λ1 ≥
λ2 ≥ · · · ≥ λk ≥ 0) and µ = (µ1 ≥ µ2 ≥ · · · ≥ µl ≥ 0) are partitions. More specifically, if
we let H(n) := Qn denote the standard representation of GLn(Q) and H∨(n) its dual
and µ and λ are partitions of p and q respectively, we define

Vλ,µ(n) := (Sλ ⊗ Sµ) ⊗Σp×Σq (H(n)⊗p ⊗H∨(n)⊗q).

We define a map
Vλ,µ(n+ 1) → Vλ,µ(n),

which is induced by the standard projection H(n + 1) = Qn+1 → Qn = H(n) and the
dual of the standard inclusion H(n) ↪→ H(n + 1). This map is GLn(Q)-equivariant,
where the source is considered a GLn(Q)-representation via the standard inclusion
GLn(Q) ⊆ GLn+1(Q). We define

Vλ,µ := lim(· · · → Vλ,µ(n+ 1) → Vλ,µ(n) → · · · → Vλ,µ(0)).

Let us call “non-unital PROP” objects defined like PROPs except we drop the require-
ment that they have units in arity (1, 1).
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Proposition 5.5. For each p, q ≥ 0 and each bipartition (λ, µ) with |λ| = p and |µ| = q,
the multiplicity of Vλ,µ in the decomposition of H∗

A(IA∞,Q) into irreducibles of GL∞(Q)
agrees with the multiplicity of Sλ ⊗ Sµ in the decomposition of H′(q, p), where H′ is the
maximal non-unital sub-PROP of H.

If we let P ′ ⊂ P be the symmetric sub-bimodule of P , generated by partitions with no
labeled parts of size one, we have H′ ∼= ω(P ′). Defining a symmetric bimodule Q′ by

Q′(q, p) =


trivp if q = 0, p ≥ 1,
trivp if q = 1, p ≥ 2,
0 otherwise,

ch(Q′) =
∑
p≥1

hp(y) +
∑
p≥2

hp(y)h1(x).

then P ′ is a regraded version of S(Q′), so again by Corollary 4.8 (where ω is the involution
from (2) and Ψ is the map from (53)), we have:

ch(H′) = ωΨ
(
ch(S(Q′))

)
= ωΨ

(∑
n≥1

hn(x) ◦̄
(∑

p≥1
hp(y) +

∑
p≥2

hp(y)h1(x)
))

. (59)

The result of this computation in low degree is included in Appendix A.

A. Code and computations
We have implemented most of the operations described in this paper with Mathematica
(using characters tables for the symmetric groups produced by GAP) and published the
code [IL25].

Stable twisted cohomology of Aut(Fn) The characters of the symmetric bimodules
Hd = {Hd(Aut(F∞), Bq,p(∞))}p,q∈N decomposes as follows in terms of irreducible repre-
sentations of symmetric groups. Since Hd is infinite dimensional for all d ≥ 0, we must
truncate their characters; we arbitrarily decided to truncate up to arity p ≤ 4.

H0 = S4,4 ⊕ S31,31 ⊕ S3,3 ⊕ S212,212 ⊕ S21,21 ⊕ S22,22 ⊕ S2,2 ⊕ S14,14 ⊕
S13,13 ⊕ S12,12 ⊕ S1,1 ⊕ S∅,∅ ⊕ . . .

(60)

Note that H0 =
⊕

λ Sλ ⊗ Sλ has character
∏

i,j(1 − xiyj)−1. It would be interesting to
find such a “compact” expression for the characters of the higher degree terms.

H1 = S3,4 ⊕S⊕2
3,31 ⊕S3,212 ⊕S⊕2

21,31 ⊕S⊕3
21,212 ⊕S⊕2

21,22 ⊕S21,14 ⊕S2,3 ⊕S⊕2
2,21 ⊕

S2,13 ⊕S⊕2
13,212 ⊕S13,22 ⊕S⊕2

13,14 ⊕S⊕2
12,21⊕S⊕2

12,13 ⊕S1,2⊕S⊕2
1,12 ⊕S∅,1⊕. . .

(61)

H2 = S⊕3
2,31 ⊕ S⊕6

2,212 ⊕ S2,22 ⊕ S⊕2
2,14 ⊕ S12,31 ⊕ S⊕5

12,212 ⊕ S⊕4
12,22 ⊕ S⊕5

12,14 ⊕
S⊕3

1,21 ⊕ S⊕4
1,13 ⊕ S⊕2

∅,12 ⊕ . . .

(62)

H3 = S1,31 ⊕ S⊕7
1,212 ⊕ S⊕3

1,22 ⊕ S⊕7
1,14 ⊕ S∅,21 ⊕ S⊕3

∅,13 ⊕ . . . (63)

H4 = S⊕2
∅,212 ⊕ S⊕2

∅,22 ⊕ S⊕5
∅,14 ⊕ . . . (64)
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Albanese cohomology of IAn We obtain the following decompositions for the Albanese
cohomology Hd

A(IA∞,Q). We stop at d ≤ 5 for presentation reasons; Table 1 gives the
number of irreducible sub-representations of the Albanese cohomology for d ≤ 10. Note
that our computations match with those of [Kaw05; Pet05; Kat22] for d ≤ 3.

d 1 2 3 4 5 6 7 8 9 10
#irr 2 6 21 69 219 663 1,915 5,182 13,330 32,876∑
mult 2 8 34 152 720 3,634 19,266 107,018 619,606 3,727,224

Table 1: The number of irreducible sub-representations of Hd
A(IA∞,Q) and the sum of

their multiplicities.

H1
A(IA∞,Q) = V1,12 ⊕ V∅,1 (65)

H2
A(IA∞,Q) = V2,212 ⊕ V12,22 ⊕ V12,14 ⊕ V1,21 ⊕ V ⊕2

1,13 ⊕ V ⊕2
∅,12 (66)

H3
A(IA∞,Q) = V3,313 ⊕ V3,23 ⊕ V21,321 ⊕ V21,2212 ⊕ V21,214 ⊕ V2,312 ⊕ V ⊕2

2,221 ⊕
V ⊕2

2,213 ⊕ V2,15 ⊕ V13,32 ⊕ V13,2212 ⊕ V13,16 ⊕ V12,32 ⊕ V ⊕2
12,221 ⊕

V ⊕2
12,213 ⊕ V ⊕2

12,15 ⊕ V ⊕3
1,212 ⊕ V ⊕2

1,22 ⊕ V ⊕4
1,14 ⊕ V∅,21 ⊕ V ⊕3

∅,13

(67)

H4
A(IA∞,Q) = V4,414 ⊕ V4,3221 ⊕ V31,4212 ⊕ V31,322 ⊕ V31,3221 ⊕ V31,3213 ⊕ V31,315 ⊕

V31,2312 ⊕ V3,413 ⊕ V ⊕2
3,322 ⊕ V ⊕2

3,3212 ⊕ V ⊕2
3,314 ⊕ V ⊕2

3,231 ⊕ V3,2213 ⊕
V3,215 ⊕ V212,431 ⊕ V212,3212 ⊕ V212,3221 ⊕ V212,3213 ⊕ V212,2312 ⊕
V212,2214 ⊕ V212,216 ⊕ V21,421 ⊕ V ⊕2

21,321 ⊕ V ⊕2
21,322 ⊕ V ⊕4

21,3212 ⊕
V ⊕2

21,314 ⊕ V ⊕3
21,231 ⊕ V ⊕5

21,2213 ⊕ V ⊕3
21,215 ⊕ V21,17 ⊕ V22,422 ⊕ V22,3212 ⊕

V22,3213 ⊕ V22,2214 ⊕ V22,24 ⊕ V ⊕3
2,321 ⊕ V ⊕3

2,313 ⊕ V ⊕5
2,2212 ⊕ V ⊕6

2,214 ⊕
V ⊕4

2,23 ⊕ V ⊕2
2,16 ⊕ V14,42 ⊕ V14,3212 ⊕ V14,2214 ⊕ V14,24 ⊕ V14,18 ⊕

V13,43 ⊕ V ⊕2
13,321 ⊕ V ⊕2

13,3212 ⊕ V ⊕2
13,231 ⊕ V ⊕3

13,2213 ⊕ V ⊕2
13,215 ⊕ V ⊕2

13,17 ⊕
V ⊕3

12,321 ⊕ V12,313 ⊕ V ⊕2
12,32 ⊕ V ⊕8

12,2212 ⊕ V ⊕5
12,214 ⊕ V12,23 ⊕ V ⊕5

12,16 ⊕
V1,32 ⊕ V1,312 ⊕ V ⊕6

1,221 ⊕ V ⊕7
1,213 ⊕ V ⊕7

1,15 ⊕ V ⊕2
∅,212 ⊕ V ⊕2

∅,22 ⊕ V ⊕5
∅,14
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H5
A(IA∞,Q) = V5,515 ⊕V5,42212 ⊕V5,3222 ⊕V41,5213 ⊕V41,4321 ⊕V41,423 ⊕V41,42212 ⊕

V41,4214 ⊕V41,416 ⊕V41,331 ⊕V41,32212 ⊕V41,3231 ⊕V41,32213 ⊕V4,514 ⊕
V ⊕2

4,4221 ⊕ V ⊕2
4,4213 ⊕ V ⊕2

4,415 ⊕ V ⊕2
4,3221 ⊕ V ⊕2

4,323 ⊕ V ⊕3
4,32212 ⊕ V4,3214 ⊕

V4,316 ⊕ V4,33 ⊕ V4,2313 ⊕ V32,5221 ⊕ V32,432 ⊕ V32,4321 ⊕ V32,4313 ⊕
V32,42212 ⊕ V32,4214 ⊕ V32,3222 ⊕ V32,32212 ⊕ V32,3214 ⊕ V32,3231 ⊕
V32,32213 ⊕ V32,3215 ⊕ V32,2412 ⊕ V312,5312 ⊕ V312,422 ⊕ V312,4321 ⊕
V312,4313 ⊕ V312,423 ⊕ V312,42212 ⊕ V312,4214 ⊕ V312,331 ⊕ V ⊕2

312,32212 ⊕
V312,3231 ⊕ V ⊕2

312,32213 ⊕ V312,3215 ⊕ V312,317 ⊕ V312,2314 ⊕ V312,25 ⊕
V31,5212 ⊕V ⊕2

31,432 ⊕V ⊕2
31,4312 ⊕V ⊕4

31,4221 ⊕V ⊕4
31,4213 ⊕V ⊕2

31,415 ⊕V ⊕5
31,3221 ⊕

V ⊕3
31,3213 ⊕ V ⊕3

31,323 ⊕ V ⊕8
31,32212 ⊕ V ⊕6

31,3214 ⊕ V ⊕3
31,316 ⊕ V ⊕2

31,33 ⊕ V ⊕3
31,241 ⊕

V ⊕4
31,2313 ⊕ V ⊕2

31,2215 ⊕ V31,217 ⊕ V3,422 ⊕ V ⊕3
3,4212 ⊕ V ⊕3

3,414 ⊕ V ⊕4
3,322 ⊕

V3,3212 ⊕V ⊕9
3,3221 ⊕V ⊕7

3,3213 ⊕V ⊕6
3,315 ⊕V ⊕7

3,2312 ⊕V ⊕4
3,2214 ⊕V ⊕3

3,216 ⊕V3,24 ⊕
V221,532 ⊕ V221,4212 ⊕ V221,4321 ⊕ V221,4313 ⊕ V221,42212 ⊕ V221,3222 ⊕
V221,32212 ⊕ V ⊕2

221,3214 ⊕ V221,3231 ⊕ V221,32213 ⊕ V221,3215 ⊕ V221,2412 ⊕
V221,2314 ⊕ V221,2216 ⊕ V213,541 ⊕ V213,4212 ⊕ V213,4321 ⊕ V213,4313 ⊕
V213,3222 ⊕ V213,32212 ⊕ V213,3214 ⊕ V213,3231 ⊕ V213,32213 ⊕ V213,3215 ⊕
V213,2412 ⊕ V213,2314 ⊕ V213,2216 ⊕ V213,218 ⊕ V212,531 ⊕ V ⊕2

212,421 ⊕
V ⊕2

212,432 ⊕ V ⊕4
212,4312 ⊕ V ⊕2

212,4221 ⊕ V ⊕2
212,4213 ⊕ V ⊕5

212,3221 ⊕ V ⊕6
212,3213 ⊕

V ⊕3
212,323 ⊕ V ⊕7

212,32212 ⊕ V ⊕6
212,3214 ⊕ V ⊕2

212,316 ⊕ V ⊕4
212,241 ⊕ V ⊕6

212,2313 ⊕
V ⊕6

212,2215 ⊕V ⊕3
212,217 ⊕V212,19 ⊕V ⊕3

21,431 ⊕V ⊕3
21,422 ⊕V ⊕4

21,4212 ⊕V21,414 ⊕
V ⊕5

21,322 ⊕V ⊕9
21,3212 ⊕V ⊕12

21,3221 ⊕V ⊕16
21,3213 ⊕V ⊕7

21,315 ⊕V ⊕14
21,2312 ⊕V ⊕15

21,2214 ⊕
V ⊕9

21,216 ⊕ V ⊕6
21,24 ⊕ V ⊕3

21,18 ⊕ V22,522 ⊕ V ⊕2
22,432 ⊕ V ⊕2

22,4312 ⊕ V ⊕2
22,4221 ⊕

V ⊕2
22,4213 ⊕V ⊕3

22,3221 ⊕V ⊕4
22,3213 ⊕V ⊕2

22,323 ⊕V ⊕4
22,32212 ⊕V ⊕5

22,3214 ⊕V22,316 ⊕
V ⊕3

22,241⊕V ⊕3
22,2313 ⊕V ⊕3

22,2215 ⊕V22,217 ⊕V2,421⊕V2,413 ⊕V ⊕3
2,321⊕V ⊕7

2,322 ⊕
V ⊕10

2,3212 ⊕V ⊕8
2,314 ⊕V ⊕11

2,231 ⊕V ⊕15
2,2213 ⊕V ⊕12

2,215 ⊕V ⊕5
2,17 ⊕V15,52 ⊕V15,4212 ⊕

V15,3222 ⊕ V15,3214 ⊕ V15,2412 ⊕ V15,2216 ⊕ V15,110 ⊕ V14,54 ⊕ V ⊕2
14,421 ⊕

V ⊕2
14,4312 ⊕V ⊕2

14,3221 ⊕V ⊕3
14,3213 ⊕V ⊕2

14,323 ⊕V14,32212 ⊕V ⊕2
14,3214 ⊕V ⊕2

14,241 ⊕
V ⊕3

14,2313 ⊕ V ⊕3
14,2215 ⊕ V ⊕2

14,217 ⊕ V ⊕2
14,19 ⊕ V ⊕3

13,431 ⊕ V13,4212 ⊕ V ⊕2
13,42 ⊕

V13,322 ⊕V ⊕8
13,3212 ⊕V ⊕5

13,3221 ⊕V ⊕7
13,3213 ⊕V13,315 ⊕V ⊕7

13,2312 ⊕V ⊕11
13,2214 ⊕

V ⊕6
13,216 ⊕V ⊕5

13,24 ⊕V ⊕5
13,18 ⊕V12,43⊕V12,421⊕V ⊕6

12,321⊕V ⊕3
12,322 ⊕V ⊕11

12,3212 ⊕
V ⊕4

12,314 ⊕ V ⊕11
12,231 ⊕ V ⊕18

12,2213 ⊕ V ⊕13
12,215 ⊕ V ⊕9

12,17 ⊕ V ⊕5
1,321 ⊕ V ⊕3

1,313 ⊕
V ⊕2

1,32 ⊕V ⊕15
1,2212 ⊕V ⊕14

1,214 ⊕V ⊕5
1,23 ⊕V ⊕12

1,16 ⊕V∅,32 ⊕V ⊕4
∅,221 ⊕V ⊕5

∅,213 ⊕V ⊕7
∅,15

(69)
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