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Recollections



Recollections: Configuration Spaces

Confk(M) := {(x1, . . . , xk) ∈ Mk | ∀i 6= j, xi 6= xj}

1
4

3

2

Question
Does the homotopy type of M determine the homotopy type of
Confk(M)? How to compute the homotopy type of Confk(M)?
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Recollections: Confk(Rn)

Theorem (Arnold, Cohen)
H∗(Confk(Rn)) = S(ωij)/(ωijωjk + ωjkωki + ωkiωij, ω

2
ij, ωji −±ωij)

Compactify Confk(Rn):
=⇒ FMn(k) is an operad (' little disks operad)

=⇒ H∗(FMn) is a Hopf cooperad 1

2

3 45

67
8

Kontsevich: Hopf cooperad Graphsn
1

2 3

d7−→ ±
1

2 3

±
1

2 3

±
1

2 3

Theorem (Kontsevich 1999, Lambrechts–Volić 2014)
H∗(FMn)

∼←− Graphsn
∼−→ Ω∗

PA(FMn) as Hopf cooperads.
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Recollections: Confk(M) for M closed

M: smooth, simply connected, closed n-manifold

→ compactification FMM of Conf•(M)
→ module over FMn if M is parallelized

Theorem (Campos–Willwacher, I.)
A = S(H̃∗(M)) or a cofibrant model of M =⇒ A-decorated graphs

GraphsA ' Ω∗
PA(FMM),

compatible with FMM x FMn if M is parallelized. Explicit if dimM ≥ 4.

Corollary
For smooth closed simply connected manifolds,

M 'R N =⇒ Confk(M) 'R Confk(N).
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Goal

Goal
Generalizations for manifolds with boundary in three directions:

1. graph model for the Swiss-Cheese action;

2. graph model for the action of Conf•(∂M× R) on Conf•(M);
3. the Lambrechts–Stanley model.

General technique
Degree counting =⇒ vanishing of H∗(certain graph complex) in the
right degree =⇒ homotopy invariance.

Remark: we do everything in the fiberwise setting, so the operadic comodule
structures exist in all cases. For simplicity I only state the parallelized case.
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Swiss Cheese



Swiss-Cheese operad

Locally, a manifold with boundary is Hn

=⇒ Swiss-Cheese operad:

1 2

3

SC2(2, 1)

7→
1 2

3

Conf2,1(H2)

Compactify Conf•,•(Hn)/Rn−1 oR>0 =⇒ SFMn

1 3

1

2
4

2

3
5
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Model for the Swiss-Cheese operad

Theorem (Livernet 2015, Willwacher 2017)
The Swiss-Cheese operad is not formal: H∗(SCn) 6' Ω∗(SCn).

Willwacher (2015): Swiss-Cheese graphs

• aerial and terrestrial vertices, oriented edges;
• differential: edge contraction + subgraph
contraction with non-explicit coefficients;

• cooperad: subgraph contraction.

1

1 2

Theorem (Willwacher 2015)
SGraphsn is a model for SFMn = Conf•,•(Hn) ' SCn.
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Swiss-Cheese configurations

A = S(H̃∗(M)⊕ H∗(M, ∂M)) and A∂ = S(H̃∗(∂M)) =⇒ bicolored graphs:

1
b1 b2

1
a1

2
a2 a3

∈ SGraphsA,A∂ (1, 2)

Theorem (Campos–I.–Lambrechts–Willwacher)
SGraphsA,A∂ is a model of SFMM = Conf•,•(M), compatible with the
action of SGraphsn ' Ω∗

PA(SFMn) is M is parallelized.

Corollary
For smooth, simply connected, compact manifolds with boundary of
dimension ≥ 5, the real homotopy type of SFMM (incl. SFMn-module
structure) only depends on the real homotopy type of (M, ∂M).
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Gluing



Gluing

Conf•(∂M×R) is a homotopy algebra, Conf•(M) is a homotopy module:

1
2

3

·
4

5
=

1
2

3

4

5

→ useful to get the homotopy type of Confk “inductively”:

Conf•(M ∪∂M M′) = Conf•(M)⊗L
Conf•(∂M) Conf•(M′).

We can compactify configuration spaces and strictify this structure:

aFM∂M(k) = Confk(∂M× R)/R>0, mFMM(k) = Confk(M).
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Configurations in a collar

For A∂ = S(H̃(M)) =⇒ coalgebra in Graphsn-comodules aGraphsA∂ :

• coalgebra: graph cutting

1
a1

a4
2
a2

3
a3

∆7−−→

1
a1

a4σ′2
a2

⊗ 3
a3σ′′

+ . . .

• Graphsn-comodule: subgraph contraction.

Theorem (Campos–I.–Lambrechts–Willwacher)
aGraphsA∂ ' Ω∗

PA(aFM∂M) with all the structure.

Corollary
For a closed smooth (n− 1)-manifold N = ∂M, the real homotopy
type of N determines the real homotopy type of aFMN.
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Configurations in the interior

mGraphsA: aGraphsA∂ -comodule in Hopf Graphsn-comodules given
by A-labeled graphs

• aGraphsA∂ -comodule: graph cutting + restrict labels to A∂ ;

• Graphsn-comodule: subgraph contraction;
• differential: edge contraction + internal vertices go to∞.

Theorem (Campos–I.–Lambrechts–Willwacher)
mGraphsA ' Ω∗

PA(mFMM) with all the structure.

Corollary
For a smooth compact manifold with boundary M of dimension ≥ 4,
the real homotopy type of (M, ∂M) determines the real homotopy
type of mFMM = Conf•(M).
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The Lambrechts–Stanley Model



Poincaré duality

Goal
Obtain a smaller model for configuration spaces.

Poincaré duality CDGA (P, ε):

• P: connected finite-type CDGA;
• ε : Pn → R such that ε ◦ d = 0;
• Pk ⊗ Pn−k → R, x ⊗ y 7→ ε(xy) is non-degenerate ∀k ∈ Z.

Theorem (Lambrechts–Stanley 2008)
M: simply connected + closed =⇒ ∃(P, ε) Poincaré duality model:

P ∼←− A ∼−→ Ω∗(M).

11/16
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The Lambrechts–Stanley Model

Lambrechts–Stanley model (Intuition: Confk(M) = Mk \
⋃
i6=j{xi = xj})

GP(k) :=
(
P⊗k ⊗ H∗(Confk(Rn))
p∗i (x)ωij = p∗j (x)ωij

,dωij = p∗ij(∆P)

)
,

Examples: GP(0) = R X, GP(1) = P X, GP(2) ' P⊗2/(∆P).

Theorem (Lambrechts–Stanley 2008)
Hi(GP(k)) ∼=Σk-Vect Hi(Confk(M)).

Theorem (I.)
M smooth, closed, simply connected manifold, dimM ≥ 4 =⇒

GP(k)
∼←− GraphsA

∼−→ Ω∗
PA(FMM),

compatible with H∗(FMn)
∼←− Graphsn

∼−→ Ω∗
PA(FMn) if parallelized.
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Poincaré–Lefschetz duality

∂M 6= ∅ =⇒ H∗(M) is paired with Hn−∗(M, ∂M)

Poincaré–Lefschetz duality pair (B λ−→ B∂ , ε, ε∂):

• (B∂ , ε∂): Poincaré duality CDGA dim. n− 1; (models ∂M,
∫
∂M)

• B: fin.type connected CDGA; (models M)

• λ : B� B∂ : surjective morphism ; (models ∂M ↪→ M)

• ε : Bn → R s.t. ε(dy) = ε∂(λ(y)); (models
∫
M(−) & Stokes)

• K := kerλ =⇒ B θ−→ K∨[−n], b 7→ ε(b · −) is a surj. q.iso. (K ' Ω∗(M, ∂M))

=⇒ P := B/ ker θ is a model of M;
=⇒ Pk ⊗ Kn−k → R, x ⊗ y 7→ ε(xy) is non-degenerate for all k.

K B B∂

P

λ

∼non.degen.pairing

13/16



Poincaré–Lefschetz duality

∂M 6= ∅ =⇒ H∗(M) is paired with Hn−∗(M, ∂M)

Poincaré–Lefschetz duality pair (B λ−→ B∂ , ε, ε∂):

• (B∂ , ε∂): Poincaré duality CDGA dim. n− 1; (models ∂M,
∫
∂M)

• B: fin.type connected CDGA; (models M)

• λ : B� B∂ : surjective morphism ; (models ∂M ↪→ M)

• ε : Bn → R s.t. ε(dy) = ε∂(λ(y)); (models
∫
M(−) & Stokes)

• K := kerλ =⇒ B θ−→ K∨[−n], b 7→ ε(b · −) is a surj. q.iso. (K ' Ω∗(M, ∂M))

=⇒ P := B/ ker θ is a model of M;
=⇒ Pk ⊗ Kn−k → R, x ⊗ y 7→ ε(xy) is non-degenerate for all k.

K B B∂

P

λ

∼non.degen.pairing

13/16



Poincaré–Lefschetz duality

∂M 6= ∅ =⇒ H∗(M) is paired with Hn−∗(M, ∂M)

Poincaré–Lefschetz duality pair (B λ−→ B∂ , ε, ε∂):

• (B∂ , ε∂): Poincaré duality CDGA dim. n− 1; (models ∂M,
∫
∂M)

• B: fin.type connected CDGA; (models M)

• λ : B� B∂ : surjective morphism ; (models ∂M ↪→ M)

• ε : Bn → R s.t. ε(dy) = ε∂(λ(y)); (models
∫
M(−) & Stokes)

• K := kerλ =⇒ B θ−→ K∨[−n], b 7→ ε(b · −) is a surj. q.iso. (K ' Ω∗(M, ∂M))

=⇒ P := B/ ker θ is a model of M;
=⇒ Pk ⊗ Kn−k → R, x ⊗ y 7→ ε(xy) is non-degenerate for all k.

K B B∂

P

λ

∼non.degen.pairing

13/16



Poincaré–Lefschetz duality

∂M 6= ∅ =⇒ H∗(M) is paired with Hn−∗(M, ∂M)

Poincaré–Lefschetz duality pair (B λ−→ B∂ , ε, ε∂):

• (B∂ , ε∂): Poincaré duality CDGA dim. n− 1; (models ∂M,
∫
∂M)

• B: fin.type connected CDGA; (models M)

• λ : B� B∂ : surjective morphism ; (models ∂M ↪→ M)

• ε : Bn → R s.t. ε(dy) = ε∂(λ(y)); (models
∫
M(−) & Stokes)

• K := kerλ =⇒ B θ−→ K∨[−n], b 7→ ε(b · −) is a surj. q.iso. (K ' Ω∗(M, ∂M))

=⇒ P := B/ ker θ is a model of M;
=⇒ Pk ⊗ Kn−k → R, x ⊗ y 7→ ε(xy) is non-degenerate for all k.

K B B∂

P

λ

∼non.degen.pairing

13/16



Poincaré–Lefschetz duality

∂M 6= ∅ =⇒ H∗(M) is paired with Hn−∗(M, ∂M)

Poincaré–Lefschetz duality pair (B λ−→ B∂ , ε, ε∂):

• (B∂ , ε∂): Poincaré duality CDGA dim. n− 1; (models ∂M,
∫
∂M)

• B: fin.type connected CDGA; (models M)

• λ : B� B∂ : surjective morphism ; (models ∂M ↪→ M)

• ε : Bn → R s.t. ε(dy) = ε∂(λ(y)); (models
∫
M(−) & Stokes)

• K := kerλ =⇒ B θ−→ K∨[−n], b 7→ ε(b · −) is a surj. q.iso. (K ' Ω∗(M, ∂M))

=⇒ P := B/ ker θ is a model of M;
=⇒ Pk ⊗ Kn−k → R, x ⊗ y 7→ ε(xy) is non-degenerate for all k.

K B B∂

P

λ

∼non.degen.pairing

13/16



Poincaré–Lefschetz duality

∂M 6= ∅ =⇒ H∗(M) is paired with Hn−∗(M, ∂M)

Poincaré–Lefschetz duality pair (B λ−→ B∂ , ε, ε∂):

• (B∂ , ε∂): Poincaré duality CDGA dim. n− 1; (models ∂M,
∫
∂M)

• B: fin.type connected CDGA; (models M)

• λ : B� B∂ : surjective morphism ; (models ∂M ↪→ M)

• ε : Bn → R s.t. ε(dy) = ε∂(λ(y)); (models
∫
M(−) & Stokes)

• K := kerλ =⇒ B θ−→ K∨[−n], b 7→ ε(b · −) is a surj. q.iso. (K ' Ω∗(M, ∂M))

=⇒ P := B/ ker θ is a model of M;
=⇒ Pk ⊗ Kn−k → R, x ⊗ y 7→ ε(xy) is non-degenerate for all k.

K B B∂

P

λ

∼non.degen.pairing

13/16



Poincaré–Lefschetz duality

∂M 6= ∅ =⇒ H∗(M) is paired with Hn−∗(M, ∂M)

Poincaré–Lefschetz duality pair (B λ−→ B∂ , ε, ε∂):

• (B∂ , ε∂): Poincaré duality CDGA dim. n− 1; (models ∂M,
∫
∂M)

• B: fin.type connected CDGA; (models M)

• λ : B� B∂ : surjective morphism ; (models ∂M ↪→ M)

• ε : Bn → R s.t. ε(dy) = ε∂(λ(y)); (models
∫
M(−) & Stokes)

• K := kerλ =⇒ B θ−→ K∨[−n], b 7→ ε(b · −) is a surj. q.iso. (K ' Ω∗(M, ∂M))

=⇒ P := B/ ker θ is a model of M;

=⇒ Pk ⊗ Kn−k → R, x ⊗ y 7→ ε(xy) is non-degenerate for all k.

K B B∂

P

λ

∼non.degen.pairing

13/16



Poincaré–Lefschetz duality

∂M 6= ∅ =⇒ H∗(M) is paired with Hn−∗(M, ∂M)

Poincaré–Lefschetz duality pair (B λ−→ B∂ , ε, ε∂):

• (B∂ , ε∂): Poincaré duality CDGA dim. n− 1; (models ∂M,
∫
∂M)

• B: fin.type connected CDGA; (models M)

• λ : B� B∂ : surjective morphism ; (models ∂M ↪→ M)

• ε : Bn → R s.t. ε(dy) = ε∂(λ(y)); (models
∫
M(−) & Stokes)

• K := kerλ =⇒ B θ−→ K∨[−n], b 7→ ε(b · −) is a surj. q.iso. (K ' Ω∗(M, ∂M))

=⇒ P := B/ ker θ is a model of M;
=⇒ Pk ⊗ Kn−k → R, x ⊗ y 7→ ε(xy) is non-degenerate for all k.

K B B∂

P

λ

∼non.degen.pairing

13/16



Example and existence

Example
If M = N \ Dn with N closed,

let P̃: Poincaré duality model of N =⇒
B = (P̃⊕ Rvn−1,dv = volP̃) � B∂ = H∗(Sn−1) = (R⊕ Rvn−1,d = 0)

and P = P̃/volP̃ is paired with K = ker(P̃→ R).

Proposition
If M and ∂M are simply connected and dimM ≥ 7, then (M, ∂M) has a
PLD model.

Also true if M has a “surjective pretty model”, cf. results of Cordova
Bulens–Lambrechts–Stanley.

Remark
We can use PLD pairs instead of S(H̃(M)⊕ H(M, ∂M)) and S(H̃(∂M)) in
all the graph models.
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The naive model

(B,B∂) PLD model, P = B/ ker θ =⇒ similar definition of GP

Theorem (Campos–I.–Lambrechts–Willwacher)
dimHi(Confk(M)) = dimHi(GP(k)).

Problem: GP(k) is not an actual model of Confk(M).

Motivation
M = S1 × R ∼= R2 \ {0} =⇒ Conf2(M) ' Conf3(R2)

Then P = H∗(M) = R⊕ Rη.

• in GP(2): (1⊗ η)ω12 = (η ⊗ 1)ω12.
• in Conf3(R2) (Arnold): (1⊗ η)ω12 = (η ⊗ 1)ω12 ± (η ⊗ η).

15/16



The naive model

(B,B∂) PLD model, P = B/ ker θ =⇒ similar definition of GP

Theorem (Campos–I.–Lambrechts–Willwacher)
dimHi(Confk(M)) = dimHi(GP(k)).

Problem: GP(k) is not an actual model of Confk(M).

Motivation
M = S1 × R ∼= R2 \ {0} =⇒ Conf2(M) ' Conf3(R2)

Then P = H∗(M) = R⊕ Rη.

• in GP(2): (1⊗ η)ω12 = (η ⊗ 1)ω12.
• in Conf3(R2) (Arnold): (1⊗ η)ω12 = (η ⊗ 1)ω12 ± (η ⊗ η).

15/16



The naive model

(B,B∂) PLD model, P = B/ ker θ =⇒ similar definition of GP

Theorem (Campos–I.–Lambrechts–Willwacher)
dimHi(Confk(M)) = dimHi(GP(k)).

Problem: GP(k) is not an actual model of Confk(M).

Motivation
M = S1 × R ∼= R2 \ {0} =⇒ Conf2(M) ' Conf3(R2)

Then P = H∗(M) = R⊕ Rη.

• in GP(2): (1⊗ η)ω12 = (η ⊗ 1)ω12.

• in Conf3(R2) (Arnold): (1⊗ η)ω12 = (η ⊗ 1)ω12 ± (η ⊗ η).

15/16



The naive model

(B,B∂) PLD model, P = B/ ker θ =⇒ similar definition of GP

Theorem (Campos–I.–Lambrechts–Willwacher)
dimHi(Confk(M)) = dimHi(GP(k)).

Problem: GP(k) is not an actual model of Confk(M).

Motivation
M = S1 × R ∼= R2 \ {0} =⇒ Conf2(M) ' Conf3(R2)

Then P = H∗(M) = R⊕ Rη.

• in GP(2): (1⊗ η)ω12 = (η ⊗ 1)ω12.
• in Conf3(R2) (Arnold): (1⊗ η)ω12 = (η ⊗ 1)ω12 ± (η ⊗ η).

15/16



The naive model

(B,B∂) PLD model, P = B/ ker θ =⇒ similar definition of GP

Theorem (Campos–I.–Lambrechts–Willwacher)
dimHi(Confk(M)) = dimHi(GP(k)).

Problem: GP(k) is not an actual model of Confk(M).

Motivation
M = S1 × R ∼= R2 \ {0} =⇒ Conf2(M) ' Conf3(R2)

Then P = H∗(M) = R⊕ Rη.

• in GP(2): (1⊗ η)ω12 = (η ⊗ 1)ω12.
• in Conf3(R2) (Arnold): (1⊗ η)ω12 = (η ⊗ 1)ω12 ± (η ⊗ η).

15/16



The actual model

We define a “perturbed” model G̃P(k): comes from the extra piece of
the differential where an internal vertex can “go to infinity”.

Proposition
Isomorphism of dg-modules GP(k) ∼= G̃P(k).

Theorem (Campos–I.–Lambrechts–Willwacher)
For a smooth compact simply connected manifold M with dimM ≥ 7

and simply connected boundary, G̃P(k) ' Ω∗
PA(mFMM(k)), compatible

with FMn-action.

For dimM ≤ 6, we can define G̃H∗(M)(k) = mGraphsH∗(M)(k)/(int. vtx.),
still a model but less explicit if dimM ≤ 3.
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Thank you for your attention!

These slides, links to papers: https://idrissi.eu
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