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RECOLLECTIONS: CONFIGURATION SPACES

Confy(M) == {(x1,...,X )EM’?|VI7EJ,X,7$X]}
Question

Does the homotopy type of M determine the homotopy type of
Confp(M)? How to compute the homotopy type of Conf(M)?
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RECOLLECTIONS: Confy(R")

Theorem (Arnold, Cohen)
H* (Confy(R")) = S(wjj)/ (wijwji + wjkwri + Wriwjj, W3,

ij» wii — W)
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RECOLLECTIONS: Confy(R")

Theorem (Arnold, Cohen)
H* (Confy(R")) = S(wjj)/ (wijwjt + wjkwri + Wriwij, W5, wji — £wj)
Compactify Conf,(R"):

= FM,(R) is an operad (~ little disks operad)
= H*(FM,) is a Hopf cooperad

Kontsevich: Hopf cooperad Graphs,

LI + +

Theorem (Kontsevich 1999, Lambrechts-Voli¢ 2014)
H*(FM,) <= Graphs, = O3, (FM,) as Hopf cooperads. 216



RECOLLECTIONS: Confy(M) FOR M CLOSED

M: smooth, simply connected, closed n-manifold

— compactification FMy of Conf, (M)

— module over FM, if M is parallelized

3/16



RECOLLECTIONS: Confy(M) FOR M CLOSED

M: smooth, simply connected, closed n-manifold

— compactification FMy of Conf, (M)
— module over FM, if M is parallelized

Theorem (Campos-Willwacher, 1.)

A = S(H*(M)) or a cofibrant model of M = A-decorated graphs
Graphs, ~ Qp, (FMy),

compatible with FMy -~ FM,, if M is parallelized. Explicit if dim M > 4.
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RECOLLECTIONS: Confy(M) FOR M CLOSED

M: smooth, simply connected, closed n-manifold

— compactification FMy of Conf, (M)

— module over FM, if M is parallelized

Theorem (Campos-Willwacher, 1.)

A = S(H*(M)) or a cofibrant model of M = A-decorated graphs
Graphs, ~ Qp, (FMy),

compatible with FMy -~ FM,, if M is parallelized. Explicit if dim M > 4.

Corollary
For smooth closed simply connected manifolds,
M>~g N = Confy(M) >~ Confy(N).
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Goal
Generalizations for manifolds in three directions:

1. graph model for the Swiss-Cheese action;
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GOAL

Goal
Generalizations for manifolds in three directions:

1. graph model for the Swiss-Cheese action;

2. graph model for the action of Conf,(OM x R) on Conf,(M);
3. the Lambrechts-Stanley model.

General technique

Degree counting = vanishing of H*(certain graph complex) in the
right degree = homotopy invariance.

Remark: we do everything in the fiberwise setting, so the operadic comodule
structures exist in all cases. For simplicity | only state the parallelized case.
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SWISS-CHEESE OPERAD

Locally, a manifold with boundary is H"
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SWISS-CHEESE OPERAD

Locally, a manifold with boundary is H" = Swiss-Cheese operad:

N
1T 27
L

SCy(2,1) Confy, ; (H?)

Compactify Conf, o (H")/R"™1 x Rsg =
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MODEL FOR THE SWISS-CHEESE OPERAD

Theorem (Livernet 2015, Willwacher 2017)
The Swiss-Cheese operad is not formal: H*(SC,) 2 Q2*(SCp).
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MODEL FOR THE SWISS-CHEESE OPERAD

Theorem (Livernet 2015, Willwacher 2017)
The Swiss-Cheese operad is not formal: H*(SC,) 2 Q2*(SCp).
Willwacher (2015): Swiss-Cheese graphs

- aerial and terrestrial vertices, oriented edges;

- differential: edge contraction + subgraph
contraction with non-explicit coefficients;

- cooperad: subgraph contraction.

Theorem (Willwacher 2015)
SGraphs,, is a model for SFM, = Conf, (H") =~ SC,.
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SWISS-CHEESE CONFIGURATIONS

A = S(H*(M) & H*(M,dM)) and Ag = S(H*(8M)) = bicolored graphs:

a as as

by by € SGraphs, , (1,2)
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SWISS-CHEESE CONFIGURATIONS

A = S(H*(M) & H*(M,dM)) and Ay = S(H*(IM)) =

ai dg as

Theorem (Campos-l.-Lambrechts-Willwacher)

SGraphs, ,, is @ model of SFMy = Conf, «(M), compatible with the
action of SGraphs,, ~ O, (SFM,) is M is parallelized.
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SWISS-CHEESE CONFIGURATIONS

A = S(H*(M) & H*(M,dM)) and Ay = S(H*(IM)) =

ai az as

Theorem (Campos-l.-Lambrechts-Willwacher)

SGraphs, ,, is @ model of SFMy = Conf, «(M), compatible with the
action of SGraphs,, ~ O, (SFM,) is M is parallelized.

Corollary

For smooth, simply connected, compact manifolds with boundary of
dimension > 5, the real homotopy type of SFMy (incl. SFM,-module

structure) only depends on the real homotopy type of (M, OM). 716
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GLUING

Conf,(OM x R) is a homotopy algebra, Conf,(M) is @ homotopy module:

— useful to get the homotopy type of Confy, “inductively”:
Confy (M Ugn M") = Confy (M) ® oy, (amy Confe(M').

We can compactify configuration spaces and strictify this structure:

(k) = Confy(0M x R)/Rxo, (k) = Confy (M).
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CONFIGURATIONS IN A COLLAR

For Ap = S(H(M)) = coalgebra in Graphs,-comodules aGraphs,, :

- coalgebra: graph cutting
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CONFIGURATIONS IN A COLLAR

For Ap = S(H(M)) = coalgebra in Graphs,-comodules

- coalgebra: graph cutting

az az

o : as A ane? ago’’
: — ® @ +...
ap : ax
(j I
|

- Graphs,-comodule: subgraph contraction.

Theorem (Campos-I.-Lambrechts-Willwacher)
aGraphs,, ~ Qp,(aFMgy) with all the structure.

Corollary

For a closed smooth (n — 1)-manifold N = OM, the real homotopy

type of N determines the real homotopy type of aFMy.
9/16



CONFIGURATIONS IN THE INTERIOR

mGraphs,: aGraphs,, -comodule in Hopf Graphs,-comodules given
by A-labeled graphs

- aGraphs,, -comodule: graph cutting + restrict labels to Ay,
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CONFIGURATIONS IN THE INTERIOR

: aGraphs,, -comodule in Hopf Graphs,-comodules given
by A-labeled graphs

- aGraphs,, -comodule: graph cutting + restrict labels to Ay,
- Graphs,-comodule: subgraph contraction;
- differential: edge contraction + internal vertices go to cc.

Theorem (Campos-l.-Lambrechts-Willwacher)
mGraphs, ~ Qf , (mFMy) with all the structure.

Corollary

For a smooth compact manifold with boundary M of dimension > 4,
the real homotopy type of (M, OM) determines the real homotopy
type of mFMy = Conf,(M).
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POINCARE DUALITY

Goal
Obtain a smaller model for configuration spaces.
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POINCARE DUALITY

Goal
Obtain a smaller model for configuration spaces.

(P,e):

- P: connected finite-type CDGA,;

- e:P" 5 Rsuchthateod =0;

- PR P1=F 5 R, x®y — e(xy) is non-degenerate Yk € Z.
Theorem (Lambrechts-Stanley 2008)

M: simply connected + closed = 3(P, ) Poincaré duality model:
P A S Q¥(M).
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THE LAMBRECHTS-STANLEY MODEL

Lambrechts-Stanley model (Intuition: Confy(M) = M*\ U_;{x = x})
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Gp(R) = ,dwij = pi(Ap) |,
(k) < Pr (X)wij = P} (X)wi; i = Pi&)
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Lambrechts-Stanley model (Intuition: Confy(M) = M*\ U_;{x = x})

PR @ H*(Conf,(R"))
Gp(R) == ,dwj = pE(A ,
F( ) < P,*(X>WU _ ,D]*(X)OJU 1) pl/( P)

Examples: Gp(0) =R v/, Gp(1) = P v/, Gp(2) =~ P®2/(Ap).
Theorem (Lambrechts-Stanley 2008)
H'(Gp(K)) Zs,-vect H'(Confy(M)).
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THE LAMBRECHTS-STANLEY MODEL

Lambrechts-Stanley model (Intuition: Confy(M) = M*\ U_;{x = x})

_( P®F @ H*(Conf,(R")) S
" "( P70 = PGy O P ’J(A’”)’

Examples: Gp(0) =R v/, Gp(1) = P v/, Gp(2) =~ P®2/(Ap).

Theorem (Lambrechts-Stanley 2008)

H (Gp(R)) =y, -Vect H'(Confy,(M)).

Theorem (l.)

M smooth, closed, simply connected manifold, dimM > 4 —
Gp(R) <= Graphs, = Qf A (FMy),

compatible with H*(FM,) <= Graphs, = Q% , (FM,) if parallelized.
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OM # @ = H*(M) is paired with H"=*(M, oM)

Poincare-Lefschetz duality pair (B A By, e,e5):

- (Bg,eg): Poincare duality CDGA dim. n — 1, (models OM, [,,)
B: fin.type connected CDGA; (models M)
- X : B — By: surjective morphism; (models oM < M)
e:B" 5 Rst e(dy) =eag(AY)); (models f,,(—) & Stokes)
K=kerA — B KY[=n], b e(b-—) is asurj. q.iso. « ~ a*m,am)

—> P:=B/ker6 is a model of M;
— PF@ K" F 5 R x®y — e(xy) is non-degenerate for all k.

By
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EXAMPLE AND EXISTENCE

Example

If M =N\ D" with N closed, let P: Poincaré duality model of N =
B = (P®Rvy_1,dv = volz) - By = H*(S"™!) = (R® Rv,_1,d = 0)

and P = P/volj is paired with K = ker(P — R).

Proposition

If M and OM are simply connected and dimM > 7, then (M, M) has a
PLD model.

Also true if M has a “surjective pretty model”, cf. results of Cordova
Bulens-Lambrechts-Stanley.

Remark

We can use PLD pairs instead of S(H(M) @ H(M,dM)) and S(H(OM)) in

all the graph models.
14/16



THE NAIVE MODEL

(B,By) PLD model, P = B/ ker# = similar definition of Gp

15/16



THE NAIVE MODEL

(B,By) PLD model, P = B/ ker# = similar definition of Gp

Theorem (Campos-l.-Lambrechts-Willwacher)
dim H'(Conf,(M)) = dim H'(Gp(R)).

15/16



THE NAIVE MODEL

(B,By) PLD model, P = B/ ker# = similar definition of Gp

Theorem (Campos-l.-Lambrechts-Willwacher)
dim H'(Conf,(M)) = dim H'(Gp(R)).

Problem: Gp(R) is not an actual model of Confx(M).

15/16



THE NAIVE MODEL

(B,By) PLD model, P = B/ ker# = similar definition of Gp
Theorem (Campos-l.-Lambrechts-Willwacher)

dim H'(Conf,(M)) = dim H'(Gp(R)).

Problem: Gp(R) is not an actual model of Conf,(M).

Motivation
M=S!xR=R?\ {0} = Confy(M) ~ Confs(R?)

15/16



THE NAIVE MODEL

(B,By) PLD model, P = B/ ker# = similar definition of Gp
Theorem (Campos-l.-Lambrechts-Willwacher)

dim H'(Conf,(M)) = dim H'(Gp(R)).

Problem: Gp(R) is not an actual model of Conf,(M).

Motivation
M=S!xR=R?\ {0} = Confy(M) ~ Confs(R?)

Then P = H*(M) = R & Ry.

- in GP(2)Z (1 X® n)wlg = (77 ® 1)0.)12.
- in Conf3(R?) (Arnold): (1 ® n)wiz = (n ® w1z £+ (n @ 7).
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THE ACTUAL MODEL

We define a “perturbed” model Gp(k): comes from the extra piece of
the differential where an internal vertex can “go to infinity”.
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THE ACTUAL MODEL

We define a “perturbed” model Gp(k): comes from the extra piece of
the differential where an internal vertex can “go to infinity”.

Proposition

Isomorphism of dg-modules Gp(k) = Gp(k).

Theorem (Campos-I.-Lambrechts-Willwacher)

For a smooth compact simply connected manifold M with dimM > 7
and simply connected boundary, Gp(k) ~ OF A (mFMy (R)), compatible
with FM,-action.

For dimM < 6, we can define Gy (uy(k) = mGraphs,,. ) (k)/(int. vtx.),
still @ model but less explicit if dimM < 3.
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THANK YOU FOR YOUR ATTENTION!

These slides, links to papers: https://idrissi.eu
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