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M: manifold of dimension n

Confy(M {(x1,...,X e/\/l’? Vi# ], Xi # X}

h

\ o v

- Braid groups

- Spaces of loops

- Moduli spaces of curves

- Physics: particles moving around

- Robotics: motion planning 122
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Homotopy Theory: study of topological spaces up to homotopy, using
algebraic invariants (homology, cohomology, homotopy groups...)
Crash course:

- f,g: X = Yare homotopic (f ~g) if3H: : X — Y, Ho = f and H1 = g,
- fis a homotopy equivalence if f is invertible up to ~,
- X ~ Y (same homotopy type) if they are connected by homotopy equivalences.

Real homotopy theory: up to homotopy and “modulo torsion”.
— Sullivan’s theory (1977): real homotopy type of M is determined by

the algebra of de Rham forms Qi (M).
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AN OPEN PROBLEM

Question

Does the homotopy type of M determine the homotopy type of
Confr(M)? How to compute the homotopy type of Conf(M)?

Non-compact manifolds
Clearly false: Confy(R) 7 Confy({0}) even though R ~ {0}.

Closed manifolds

Longoni-Salvatore (2005): example of M ~ N s.t. Confz(M) # Confr(N),
but not simply connected.

Simply connected closed manifolds
Homotopy invariance is still open!
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M is locally R" — presentation of H*(Conf,(R")) due to

Arnold and Cohen: /\

5 . I
- Generators: wj;, 1 <i#j <R * o )

- Relations: \/

2 n
wjj = wjj — (—=1)"wjj = wijjwjk + Wipwei + wriwj = 0

Theorem (Arnold 1969)
: H*(Confy,(C)) ~c Qg (Confy(C)), wjj — dlog(z; — ).

Theorem (Kontsevich 1999, Lambrechts-Voli¢ 2014)
H*(Confp(R")) ~r Q5x(Confp(R")) for all kand all n > 2.
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KONTSEVICH'S GRAPH COMPLEXES

[Kontsevich] Graphs,,(

Sl

wi12wW23 w23W31 w31W12

Theorem (Kontsevich 1999, Lambrechts-Voli¢ 2014)

H*(Cont,(R"); R) +>— Graphs, (k) —— Q*(Confy(R"))

——— explicit representatives

0 | % ——  “explicit” integrals

w,-/-
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Problem: Confy is not compact - why does [ converge?

Fulton-MacPherson compactification Conf,(M) <5 FMy (R)
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COMPACTIFICATION OF Conf,(R")

We also have Conf,(R") = Conf,(R")/(R" x Rsq) <

(+ normalization because R" is not compact)
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THE LAMBRECHTS-STANLEY MODEL

M: compact manifold without boundary
A ~ Q(M): algebra which encodes the real homotopy type of M

Ga(k): conjectural model of Confy(M) = M**\ J_; A

=X =X
- “Generators”: A%F and the wj; of before R

- Arnold relations + symmetry relations
+ dwjj — kills the dual of [Ay].

Examples:

4(0) =R is a model of Confy(M) = {2} v
- Ga(1) = Ais a model of Conf;(M) =M v

* Ga(2) ~ A®2?/(A,) should be a model of Confy(M) = M2\ A...
- k>3

@

more complicated.
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1978 [Cohen-Taylor] spectral sequence with Gy« as input
~1994 For smooth projective complex manifolds (= Kahler):

+ [KFiZ] Gy (my (R) is @ model of Confy,(M)
- [Totaro] the Cohen-Taylor SS collapses

2004 [Lambrechts-Stanley] model of Confy(M) if m<o(M) =0

~2004 [Félix-Thomas, Berceanu-Markl-Papadima] related to a spectral
sequence due to Bendersky-Gitler

2008 [Lambrechts-Stanley] H'(Ga(R)) Zs,-vect H'(Confy(M))
2015 [Cordova Bulens] model of Confy(M) if dimM = 2m
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FIRST PART OF THE THEOREM

Reuse the same basic idea as Kontsevich’s proof:

Theorem (I. 2016)

Let M be a simply connected smooth closed manifold. Then Ga4(R) is a
model over R of Confy(M) for all kR > 0.

Corollaries
M ~g N = Confy(M) ~g Confy(N) for all k.
We can “compute everything” (over R) for Conf,(M).

Remark

dimM < 3: only spheres (Poincaré conjecture) and G, is already
known to be a model... but the proof above fails.

16/22



OPERADS

FM, = {FMs(R) }r>0 is an operad: we can “insert” a configuration into
another:

-

FM,(R) x FMa () 25 FMa(R+1—1), 1<i<R

17/22



OPERADS

FM, = {FMs(R) }r>0 is an operad: we can “insert” a configuration into
another:

-

FM,(R) x FMa () 25 FMa(R+1—1), 1<i<R

Remark
Equivalent in homotopy to the “little disks operad”.
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MODULES OVER OPERADS

M parallelized = FMy = {FMum(R) }>0 Is a right FM,-module: we can
insert an infinitesimal configuration into a configuration of M:

FMy(R) x FM, (1) 25 FMy(k+1—1), 1<i<k
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COHOMOLOGY OF FM, AND COACTION ON G,

We can rewrite:

Ga(R) = (A®* @ H*(FM,(R))/relations, d)
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COHOMOLOGY OF FM, AND COACTION ON G,

We can rewrite:

Ga(R) = (A®* @ H*(FM,(R))/relations, d)

By some abstract nonsense:

Proposition
X(M) =0 = Ga = {Ga(R)}r>0 IS a right H*(FM;)-comodule.

19/22



COMPLETE VERSION OF THE THEOREM

Theorem (I. 2016)
M: simply connected smooth closed manifold, dimM > 4

Gy «——— Graphsg --== Q% (FMy)
of of of
H*(FM,;) +—— Graphs, —— Qf,(FM;)
TIf x(M) =0
PIf M is parallelized A< RS Qi (M)
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COMPLETE VERSION OF THE THEOREM

Theorem (I. 2016)
M: simply connected smooth closed manifold, dimM > 4

Gy «——— Graphsg --== Q% (FMy)
of of of
H*(FM,;) +—— Graphs, —— Qf,(FM;)
TIf x(M) =0
YIf M is parallelized A< RS Qi (M)
Upshot

We have a model for each Confg(M) + richer structure if we consider
all of them together.
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GENERALIZATIONS

Theorem (Campos-l.-Lambrechts-Willwacher 2018)
: homotopy invariance + generalization of
Lambrechts-Stanley model (+ more!) under good conditions.

Allows to compute Conf, “by induction”.

Work in progress j/w Campos, Ducoulombier, Willwacher
Model for configurations of points: get a module structure
even if the manifold is not parallelized.

Allows to compute spaces of embeddings of manifolds and/or
factorization homology for more general manifolds (see next slide).
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The Lambrechts=Stanley model is explicit and “small”
— computations possible

- Embedding spaces of manifolds.
Schematically, Emb(M, N) ~ Morg, ¢, n)(Confe(M), Confe(N))
[Boavida-Weiss, Turchin].

- Factorization homology (kind of homology where ® replaces ®).
Schematically, f, A ~ Confs(M) ®f,,¢. o A [Francis].

Theorem (I. 2018, cf. also Markarian 2017)
M parallelized simply connected smooth manifold (dim > 4),
A =Poly(T*RY[1l —n]) = [,A~rR.
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THANK YOU FOR YOUR ATTENTION!

These slides, links to papers: https://idrissi.eu
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