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Main goal: factorization homology

M: manifold of dimension n

A: uEn-algebra = locally constant (framed) factorization algebra on Rn

Main goal
“Compute”

∫
M A.

Tool:

Theorem (Francis 2015)∫
M A ' EM ◦LuEn A, where:

uEn(k) = Embfr(Rn t · · · t Rn︸ ︷︷ ︸
k×

,R); EM(k) = Embfr(Rn t · · · t Rn︸ ︷︷ ︸
k×

,M).
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Chains of factorization homology over R

If we work over R and we just want chains:
C∗(

∫
M A;R) ' C∗(EM) ◦LC∗(uEn) C∗(A).

Theorem (Kontsevich ’99; Tamarkin ’03 (n = 2); Lambrechts–Volić ’14;
Petersen ’14 (n = 2); Fresse–Willwacher ’15)
The operad C∗(uEn) is formal: C∗(uEn) ' H∗(uEn).

Theorem (I. 2016)
M closed, simply connected, smooth, dimM ≥ 4 =⇒ explicit model
of C∗(EM) as a right C∗(uEn)-module: Lambrechts–Stanley model LSM.

Upshot: C∗(
∫
M A) ' LSM ◦LH∗(uEn) A
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Sub-goal: resolutions

Upshot: C∗(
∫
M A) ' LSM ◦LH∗(uEn) A

• A is given;
• H∗(uEn) is well-known: operad of unital Poisson n-algebras;
• LSM is explicit (Chevalley–Eilenberg complex + …);
• L: we must take a (quasi-free/cofibrant) resolution QA

∼−→ A, then
C∗(

∫
M A) ' LSM ◦H∗(En) QA.

New goal
How to find resolutions of unital Poisson n-algebras?

→ Tool: Koszul duality
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Quadratic algebras – Koszul duals

Starting data: quadratic algebra A = F(E)/(R), R ⊂ E ⊗ E

 Koszul dual A¡: cofree coalgebra on ΣE with “corelations” Σ2V
(Usually easier to understand A! = F(E∗)/(R⊥))

Examples

1. A = F(E), R = 0 =⇒ A! = 1⊕ E∗ with trivial multiplication;
2. A = S(E) = F(E)/(xy − yx) =⇒ A! = F(E∗)/(x∗y∗ + y∗x∗) = Λ(E∗).

=⇒ Koszul complex KA := (A⊗ A¡,dκ); A is Koszul if KA is acyclic

Example
F(E) and S(E) are both Koszul.
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Quadratic algebras – Koszul resolutions

Bar/cobar adjunction:
Ω : {coaug.coalgebras}� {aug.algebras} : B

where BA = (Fc(ΣĀ),dB) and ΩC = (F(Σ−1C̄),dΩ).

Canonical morphism ΩBA ∼−→ A is always a cofibrant resolution…but big!

A quadratic =⇒ ∃ canonical morphism ΩA¡ → A

Theorem (Priddy ’70s)
A is Koszul ⇐⇒ ΩA¡ ∼−→ A.

Much smaller resolution!
Examples
A = F(E) =⇒ ΩA¡ = A

A = S(E) =⇒ ΩA¡ = F(Λc(E)), to compare with ΩBA = F(Fc(S(E))).
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QLC algebras – curved KD

Quadratic-linear-constant algebra: A = uF(E)/(R) with R ⊂ E⊗2 ⊕ E⊕R1

Koszul dual A¡ = (qA¡,dA¡ , θA¡): curved dg-coalgebra

• quadratic qA := F(E)/(qR) where qR := projE⊗2(R);
• linear dA¡ : qA¡ → qA¡ is a coderivation;
• constant θA¡ : A¡ → R s.t. d2 = (θ ⊗ id∓ id⊗θ)∆ and θd = 0.

Example
A = U(g) = F(g)/(xy − yx − [x, y]) qA = F(g)/(xy − yx) = S(g) 
qA¡ = Sc(Σg); dA¡= coderivation induced by d(x ∧ y) = [x, y] CCE∗ (g)

Bar/cobar adjunction: semi.aug.algebras� curved dg-coalgebras.

Theorem (Polischuck, Positselski)
If qA is Koszul then ΩA¡ ∼−→ A is a cofibrant resolution.

Goal: do this for more general types of algebras (e.g. Poisson algebras).
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• constant θA¡ : A¡ → R s.t. d2 = (θ ⊗ id∓ id⊗θ)∆ and θd = 0.

Example
A = U(g) = F(g)/(xy − yx − [x, y]) qA = F(g)/(xy − yx) = S(g) 
qA¡ = Sc(Σg); dA¡= coderivation induced by d(x ∧ y) = [x, y]

 CCE∗ (g)

Bar/cobar adjunction: semi.aug.algebras� curved dg-coalgebras.

Theorem (Polischuck, Positselski)
If qA is Koszul then ΩA¡ ∼−→ A is a cofibrant resolution.

Goal: do this for more general types of algebras (e.g. Poisson algebras).
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Operads

What are “more general types of algebras”?

Operad P = {P(n)}n≥0: combinatorial object that encodes certain
“types of algebras”

p ◦3 q = p

q

Examples
The “three graces”: Ass = associative algebras; Com = commutative
algebras; Lie = Lie algebras.

En = homotopy associative and commutative (for n ≥ 2) algebras.

H∗(En), n ≥ 2 = Poisson n-algebras.

7/15



Operads

What are “more general types of algebras”?

Operad P = {P(n)}n≥0: combinatorial object that encodes certain
“types of algebras”

p ◦3 q = p

q

Examples
The “three graces”: Ass = associative algebras; Com = commutative
algebras; Lie = Lie algebras.

En = homotopy associative and commutative (for n ≥ 2) algebras.

H∗(En), n ≥ 2 = Poisson n-algebras.

7/15



Operads

What are “more general types of algebras”?

Operad P = {P(n)}n≥0: combinatorial object that encodes certain
“types of algebras”

p ◦3 q = p

q

Examples
The “three graces”: Ass = associative algebras; Com = commutative
algebras; Lie = Lie algebras.

En = homotopy associative and commutative (for n ≥ 2) algebras.

H∗(En), n ≥ 2 = Poisson n-algebras.

7/15



Operads

What are “more general types of algebras”?

Operad P = {P(n)}n≥0: combinatorial object that encodes certain
“types of algebras”

p ◦3 q = p

q

Examples
The “three graces”: Ass = associative algebras; Com = commutative
algebras; Lie = Lie algebras.

En = homotopy associative and commutative (for n ≥ 2) algebras.

H∗(En), n ≥ 2 = Poisson n-algebras.

7/15



Operads

What are “more general types of algebras”?

Operad P = {P(n)}n≥0: combinatorial object that encodes certain
“types of algebras”

p ◦3 q = p

q

Examples
The “three graces”: Ass = associative algebras; Com = commutative
algebras; Lie = Lie algebras.

En = homotopy associative and commutative (for n ≥ 2) algebras.

H∗(En), n ≥ 2 = Poisson n-algebras.
7/15



KD for quadratic operads

Quadratic operad: P = FOp(E)/(R) where E is a generating set of
operations and R ⊂ E ◦ E is a set of quadratic relations.

Examples
Ass = FOp(µ)/(µ(µ(x, y), z) = µ(x, µ(y, z))) is quadratic.

Formally similar definitions: Koszul dual cooperad P¡ = FOpc(ΣE,Σ2R)
and its linear dual P! = FOp(E∗)/(R⊥).

Examples

Ass! = Ass; Com! = Lie, Lie! = Com; H∗(En)! = H∗(En){−n}.
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Koszul resolutions for quadratic operads

Formally similar definitions: bar/cobar adjunction
Ω : {coaug.cooperads}� {aug.operads} : B

Canonical morphism ΩBP ∼−→ P always a resolution, but very big

Theorem (Ginzburg–Kapranov ’94, Getzler–Jones ’94, Getzler ’95…)
If P is quadratic and Koszul, then P∞ := ΩP¡ ∼−→ P.

In this case, P∞-algebras are called “homotopy P-algebras” and have
very nice properties (e.g. every weak equivalence is invertible).

Examples
Ass∞ = A∞-algebras, Com∞ = C∞-algebras, Lie∞ = L∞-algebras…

9/15



Koszul resolutions for quadratic operads

Formally similar definitions: bar/cobar adjunction
Ω : {coaug.cooperads}� {aug.operads} : B

Canonical morphism ΩBP ∼−→ P always a resolution, but very big

Theorem (Ginzburg–Kapranov ’94, Getzler–Jones ’94, Getzler ’95…)
If P is quadratic and Koszul, then P∞ := ΩP¡ ∼−→ P.

In this case, P∞-algebras are called “homotopy P-algebras” and have
very nice properties (e.g. every weak equivalence is invertible).

Examples
Ass∞ = A∞-algebras, Com∞ = C∞-algebras, Lie∞ = L∞-algebras…

9/15



Koszul resolutions for quadratic operads

Formally similar definitions: bar/cobar adjunction
Ω : {coaug.cooperads}� {aug.operads} : B

Canonical morphism ΩBP ∼−→ P always a resolution, but very big

Theorem (Ginzburg–Kapranov ’94, Getzler–Jones ’94, Getzler ’95…)
If P is quadratic and Koszul, then P∞ := ΩP¡ ∼−→ P.

In this case, P∞-algebras are called “homotopy P-algebras” and have
very nice properties (e.g. every weak equivalence is invertible).

Examples
Ass∞ = A∞-algebras, Com∞ = C∞-algebras, Lie∞ = L∞-algebras…

9/15



Koszul resolutions for quadratic operads

Formally similar definitions: bar/cobar adjunction
Ω : {coaug.cooperads}� {aug.operads} : B

Canonical morphism ΩBP ∼−→ P always a resolution, but very big

Theorem (Ginzburg–Kapranov ’94, Getzler–Jones ’94, Getzler ’95…)
If P is quadratic and Koszul, then P∞ := ΩP¡ ∼−→ P.

In this case, P∞-algebras are called “homotopy P-algebras” and have
very nice properties (e.g. every weak equivalence is invertible).

Examples
Ass∞ = A∞-algebras, Com∞ = C∞-algebras, Lie∞ = L∞-algebras…

9/15



Koszul resolutions for quadratic operads

Formally similar definitions: bar/cobar adjunction
Ω : {coaug.cooperads}� {aug.operads} : B

Canonical morphism ΩBP ∼−→ P always a resolution, but very big

Theorem (Ginzburg–Kapranov ’94, Getzler–Jones ’94, Getzler ’95…)
If P is quadratic and Koszul, then P∞ := ΩP¡ ∼−→ P.

In this case, P∞-algebras are called “homotopy P-algebras” and have
very nice properties (e.g. every weak equivalence is invertible).

Examples
Ass∞ = A∞-algebras, Com∞ = C∞-algebras, Lie∞ = L∞-algebras…

9/15



Curved KD for QLC operads [Hirsh–Millès]

Extension to operads with quadratic-linear-constant relations:

Example
uAss = FOp(µ, )/(µ(µ(x, y), z) = µ(x, µ(y, z)), µ(x, ) = x = µ( , x))

Koszul dual curved cooperad: uP¡ = (quP¡,dA¡ , θA¡)

• quP is the “quadratization” of uP;
• linear dA¡ : quP¡ → quP¡ coderivation;
• constants θA¡ : quP¡ → R id s.t. d2 = (θ ◦ id∓ id ◦θ)∆ and θd = 0

Bar/cobar extends to the curved setting

Theorem (Hirsh–Millès ’12)
If quP is Koszul, then uP∞ := Ω(uP¡) ∼−→ uP: resolution of uP
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KD for monogenic algebras [Millès]

P = FOp(E)/(R): quadratic operad

 monogenic P-algebras:
A = P(V)/(S), S ⊂ E(V) (P binary =⇒ monogenic = quadratic)

Bar/cobar adjunction:
Ωκ : {coaug. P¡-coalgebras}� {aug. P-algebras} : Bκ

Natural definition of the Koszul dual A¡ ∈ {P¡-coalgebras}

Theorem (Millès ’12)
If P is quadratic Koszul and if A is a Koszul monogenic algebra, then
ΩκA¡

∼−→ A is a resolution of A.

P = Ass: recovers the classical Koszul duality of associative algebras.
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Curved KD for algebras over binary unital operads

uP = FOp(E)/(R): binary operad with a unit ∈ uP(0) + conditions

A = uP(V)/(S): algebra with quadratic-linear-constant relations

Koszul dual: curved P¡-coalgebra A¡ = (qA¡,dA¡ , θA¡)

• qA = P(V)/(qS): “quadratization” of A;
• linear dA¡ : coderivation;
• constants θ : qA¡ → R (+ relations)

Generalization of bar/cobar adjunction:
Ωκ : {curved P¡-coalgebras}� {semi.aug. uP-algebras} : Bκ

Theorem (I. ’18)
If qA is Koszul then ΩκA¡

∼−→ A is a resolution.
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Application: Poly(T∗Rd[1− n])

A = Poly(T∗Rd[1− n]) = S(x1, . . . , xd, ξ1, . . . , ξd)

Action of H∗(uEn): free symmetric algebra and {xi, ξj} = δij1

=⇒ quadratic-(linear-)constant presentation

Quadratization qA = S(xi, ξj) free symmetric algebra + zero bracket
Koszul dual: A¡ = (qA¡,d, θ)

• qA¡ = Sc(x̄i, ξ̄j) cofree symmetric coalgebra + trivial cobracket
• d = 0 (no linear terms in the relations)
• curvature: θ(x̄i ∧ ξ̄j) = −δij, zero otherwise.

=⇒ “small” resolution QA := ΩκA¡ = (SLSc(x̄i, ξ̄j),d)
∼−→ A

(If we had applied curved KD at the level of operads instead:
ΩκBκA ⊃ ( SL︸︷︷︸

cobar

ScLc︸︷︷︸
bar

S(xi, ξj)︸ ︷︷ ︸
A

,d), + resolution of the unit…)
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Application: derived enveloping algebra

Operad P + P-algebra A =⇒ notion of A-modules

Examples
P = Ass → (A,A) bimodules; P = Com → A-modules; P = Lie →
representations of the Lie algebra.

∃ an associative algebra UP(A) s.t. left UP(A)-modules = A-modules

Proposition
For A = Poly(T∗Rd[1− n]), the derived enveloping algebra UL

H∗(uEn)(A)
is q.iso to the underived one + explicit description.
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Application:
∫
M Poly(T∗Rd[1− n])

We can also compute∫
M

Poly(T∗Rd[1− n]) ' LSM ◦H∗(uEn) (SLS
c(x̄i, ξ̄j),d)

A bit of homological algebra + explicit description of LSM:

Theorem (I. ’18, see also Markarian ’17, Döppenschmitt ’18)∫
M Poly(T∗Rd[1− n]) ' CCE∗ (Ωn−∗(M)⊗ R〈1, xi, ξj〉) ' R.

Intuition: quantum observable with values in A “expectation” lives
in

∫
M A, should be a number.
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Thank you for your attention!

These slides, links to papers: https://idrissi.eu
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