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M: manifold of dimension n
A: UEp-algebra = locally constant (framed) factorization algebra on R"

Main goal
“Compute” [, A.

Tool:
Theorem (Francis 2015)
JuA ~ Ey ol A where:

UEn(R) = Emb™(R" - - UR",R); Eyn(R) = EmbT(R"U---UR" M).
—_—— —_——
kx kx
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Theorem (l. 2016)
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- Als given;

- H.(UE,) is well-known: operad of unital Poisson n-algebras;
- LSy is explicit (Chevalley-Eilenberg complex + ..);

- L: we must take a (quasi-free/cofibrant) resolution Qs = A, then
C*(f/\/l A) ~ LSM OH*(En) QA.

New goal
How to find resolutions of unital Poisson n-algebras?

— Tool: Koszul duality
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(Usually easier to understand A' = F(E*)/(R*))

Examples
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QUADRATIC ALGEBRAS — KOSZUL DUALS

Starting data: quadratic algebra A= F(E)/(R), RCE®E
> : cofree coalgebra on X E with “corelations” %2V
(Usually easier to understand A' = F(E*)/(R*))

Examples

1. A=F(E),R=0 = A' = 1@ E* with trivial multiplication;

2. A=S(E) = F(E)/(xy —yx) = A" =F(E*)/(x*y* + y*x*) = A(E¥).
— = (A®Ai,d,);Als if Ky is acyclic
Example

F(E) and S(E) are both Koszul.
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QUADRATIC ALGEBRAS — KOSZUL RESOLUTIONS

Bar/cobar adjunction:
Q : {coaug.coalgebras} < {aug.algebras} : B

where BA = (F¢(XA), dg) and QC = (F(X~1C), dq).

Canonical morphism QBA = A is always a cofibrant resolution...but big!

A quadratic = 3 canonical morphism QA — A

Theorem (Priddy '70s)
Ais Koszul < QA — A.

Much smaller resolution!
Examples
A=F(E) = QA=A

A=S(E) = QA = F(A°(E)), to compare with QBA = F(F(S(E))).
5/15



QLC ALGEBRAS — CURVED KD

Quadratic-linear-constant algebra: A = uF(E)/(R) with R C E®2 o E@R1

6/15



QLC ALGEBRAS — CURVED KD

Quadratic-linear-constant algebra: A = uF(E)/(R) with R C E®2 o E@R1
Koszul dual Ai = (gAi, dai, Oa): curved dg-coalgebra

6/15



QLC ALGEBRAS — CURVED KD

Quadratic-linear-constant algebra: A = uF(E)/(R) with R C E®2 o E@R1

Koszul dual Ai = (gAi, dai, Oa): curved dg-coalgebra
- quadratic ~ gA = F(E)/(gR) where gR = projge2(R);

6/15



QLC ALGEBRAS — CURVED KD

Quadratic-linear-constant algebra: A = uF(E)/(R) with R C E®2 o E@R1

Koszul dual Ai = (gAi, dai, Oa): curved dg-coalgebra
- quadratic ~ gA = F(E)/(gR) where gR = projge2(R);
- linear ~» dg : gAi — gAi Is a coderivation;

6/15



QLC ALGEBRAS — CURVED KD

Quadratic-linear-constant algebra: A = uF(E)/(R) with R C E®2 o E@R1

Koszul dual Ai = (gAi, dai, Oa): curved dg-coalgebra
- quadratic ~ gA = F(E)/(gR) where gR = projge2(R);
- linear ~» da : gAl — gAi is a coderivation;
- constant ~ @y : Al » Rst. d? = (I ® id Fid ®9)A and dd = 0.

6/15



QLC ALGEBRAS — CURVED KD

algebra: A = uF(E)/(R) with R C E®2 2 E@R1

Koszul dual Ai = (gAi, dai, Oa): coalgebra

- quadratic ~ gA = F(E)/(gR) where gR = projge2(R);

- linear ~» da : gAl — gAi is a coderivation;

- constant ~ @y : Al » Rst. d? = (I ® id Fid ®9)A and dd = 0.
Example
A=U(g) = F(a)/(xy —yx = [x;¥])

6/15



QLC ALGEBRAS — CURVED KD

Quadratic-linear-constant algebra: A = uF(E)/(R) with R C E®2 o E@R1

Koszul dual Ai = (gAi, dai, Oa): curved dg-coalgebra

- quadratic ~ gA = F(E)/(gR) where gR = projge2(R);

- linear ~» da : gAl — gAi is a coderivation;

- constant ~ @y : Al » Rst. d? = (I ® id Fid ®9)A and dd = 0.
Example
A=U(g) = F(g)/(xy —yx = [x,y]) ~ gA = F(g)/(xy — yx) = 5(g)

6/15



QLC ALGEBRAS — CURVED KD

Quadratic-linear-constant algebra: A = uF(E)/(R) with R C E®2 o E@R1
Koszul dual Ai = (gAi, dai, Oa): curved dg-coalgebra

- quadratic ~ gA = F(E)/(gR) where gR = projge2(R);

- linear ~» dg : gAi — gAi Is a coderivation;

- constant ~ @y : Al » Rst. d? = (I ® id Fid ®9)A and dd = 0.
Example

A=U(g) = F(g)/(xy —yx = [x,y]) ~ gA = F(g)/(xy — yx) = S(g) ~
gAi = S%(Xg); dai= coderivation induced by d(x A y) = [X, Y]

6/15



QLC ALGEBRAS — CURVED KD

Quadratic-linear-constant algebra: A = uF(E)/(R) with R C E®2 o E@R1
Koszul dual Ai = (gAi, dai, Oa): curved dg-coalgebra

- quadratic ~ gA = F(E)/(gR) where gR = projge2(R);

- linear ~» dg : gAi — gAi Is a coderivation;

- constant ~ @y : Al » Rst. d? = (I ® id Fid ®9)A and dd = 0.
Example

A=U(g) = F(a)/(xy —yx = [x,y]) ~ gA = F(g)/(xy — yx) = S(g) ~
gAi = S¢(Xg); da= coderivation induced by d(x A y) = [x,y] ~ C¢E(g)

6/15



QLC ALGEBRAS — CURVED KD

Quadratic-linear-constant algebra: A = uF(E)/(R) with R C E®2 o E@R1

Koszul dual Ai = (gAi, dai, Oa): curved dg-coalgebra

- quadratic ~ gA = F(E)/(gR) where gR = projge2(R);

- linear ~» dg : gAi — gAi Is a coderivation;

- constant ~ @y : Al » Rst. d? = (I ® id Fid ®9)A and dd = 0.
Example

A=U(g) = F(a)/(xy —yx = [x,y]) ~ gA = F(g)/(xy — yx) = S(g) ~
gAi = S¢(Xg); da= coderivation induced by d(x A y) = [x,y] ~ C¢E(g)

Bar/cobar adjunction: semi.aug.algebras < curved dg-coalgebras.

6/15



QLC ALGEBRAS — CURVED KD

algebra: A = uF(E)/(R) with R C E®2 2 E@R1
Koszul dual Ai = (gAi, dai, Oa): coalgebra
- quadratic ~ gA = F(E)/(gR) where gR = projge2(R);
- linear ~» dg : gAi — gAi Is a coderivation;
- constant ~ @y : Al » Rst. d? = (I ® id Fid ®9)A and dd = 0.

Example

A=U(g) = F(a)/(xy —yx = [x,y]) ~ gA = F(g)/(xy — yx) = S(g) ~
gAi = S¢(Xg); da= coderivation induced by d(x Ay) = [x,y] ~ CE(g)

Bar/cobar adjunction: semi.aug.algebras < curved dg-coalgebras.
Theorem (Polischuck, Positselski)

If gA is Koszul then QA =5 A is a cofibrant resolution.

6/15



QLC ALGEBRAS — CURVED KD

algebra: A = uF(E)/(R) with R C E®2 2 E@R1
Koszul dual Ai = (gAi, dai, Oa): coalgebra
- quadratic ~ gA = F(E)/(gR) where gR = projge2(R);
- linear ~» dg : gAi — gAi Is a coderivation;
- constant ~ @y : Al » Rst. d? = (I ® id Fid ®9)A and dd = 0.

Example

A=U(g) = F(a)/(xy —yx = [x,y]) ~ gA = F(g)/(xy — yx) = S(g) ~
gAi = S¢(Xg); da= coderivation induced by d(x Ay) = [x,y] ~ CE(g)

Bar/cobar adjunction: semi.aug.algebras < curved dg-coalgebras.
Theorem (Polischuck, Positselski)

If gA is Koszul then QA =5 A is a cofibrant resolution.

Goal: do this for more general types of algebras (e.g. Poisson algebrdéy
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OPERADS

What are “more general types of algebras"?

P = {P(n)}n>0: combinatorial object that encodes certain

“types of algebras”
%
[ LS
0RO
Examples

The “three graces”: Ass = associative algebras; Com = commutative
algebras; Lie = Lie algebras.

E, = homotopy associative and commutative (for n > 2) algebras.

H.(En), n > 2 = Poisson n-algebras.
7/15
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KD FOR QUADRATIC OPERADS

: P=FOp(E)/(R) where E is a generating set of
operations and R C E o E is a set of quadratic relations.

Examples
Ass = FOp(u)/(u(p(x,y),2) = p(x, u(y,2))) is quadratic.

Formally similar definitions: Koszul dual cooperad Pi = FOp‘(ZE, ¥2R)
and its linear dual P' = FOp(E*)/(R1).

Examples
Ass' = Ass; Com' = Lie, Lie' = Com; H,(E,)' = H.(En){—n}.

8/15
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Formally similar definitions: bar/cobar adjunction
) : {coaug.cooperads} = {aug.operads} : B
Canonical morphism QBP =5 P always a resolution, but very big

Theorem (Ginzburg-Kapranov '94, Getzler-Jones '94, Getzler '95...)
If P is quadratic and ,then Py := QP — P.

In this case, Po.-algebras are called “homotopy P-algebras” and have
very nice properties (e.g. every weak equivalence is invertible).

Examples
Ass., = Ay -algebras, Com,, = Cy.-algebras, Lie,, = L-algebras..
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CURVED KD FOR QLC OPERADS [HIRSH-MILLES]

Extension to operads with quadratic-linear-constant relations:

Example
UAss = FOp(u, 1)/ (u(u(x,¥),2) = p(x, (¥, 2)), p(x, 1) = x = (7, %))

Koszul dual cooperad: uPi = (quPi, dai, Oa)

- quP is the “quadratization” of uP;

- linear ~» da : quPi — quPi coderivation;

- constants ~ 4 : qUP — Rid st. d?> = (f oid Fidof)A and 6d = 0
Bar/cobar extends to the curved setting
Theorem (Hirsh-Millés "12)

If quP is Koszul, then uP., = Q(uPi) — uP: resolution of uP

10/15
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KD FOR MONOGENIC ALGEBRAS [MILLES]

P =FOp(E)/(R): quadratic operad ~» monogenic P-algebras:
A=P(V)/(S),ScEWV) (Pbinary = monogenic = quadratic)

Bar/cobar adjunction:
QO : {coaug. Pi-coalgebras} < {aug. P-algebras} : By
Natural definition of the Koszul dual Ai € {Pi-coalgebras}
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P =FOp(E)/(R): quadratic operad ~» monogenic P-algebras:
A=P(V)/(S),ScEWV) (Pbinary = monogenic = quadratic)

Bar/cobar adjunction:
QO : {coaug. Pi-coalgebras} < {aug. P-algebras} : By

Natural definition of the Koszul dual Ai € {Pi-coalgebras}

Theorem (Millés "12)
If P is quadratic Koszul and if A is a Koszul monogenic algebra, then
0.AT = Ais a resolution of A.

P = Ass: recovers the classical Koszul duality of associative algebras.
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CURVED KD FOR ALGEBRAS OVER BINARY UNITAL OPERADS

uP = FOp(E)/(R): binary operad with a unit T € uP(0) + conditions
A =uP(V)/(S): algebra with quadratic-linear-constant relations

Koszul dual: curved Pi-coalgebra A = (gAi, dai, 6a)
- gA =P(V)/(qS): “quadratization” of A;
- linear ~» dy:: coderivation;

- constants ~ 6 : gAi — R (+ relations)

Generalization of bar/cobar adjunction:
Q, : {curved Pi-coalgebras} < {semi.aug. uP-algebras} : B,

Theorem (1. 18)
If gA is Koszul then Q,.Ai =5 A is a resolution.
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A = Poly(T*RI[1 — n]) = S(x1, ..., Xa, &1, - - €q)

Action of H.(UEp): free symmetric algebra and {x;, &} = dj1
— quadratic-(linear-)constant presentation

Quadratization gA = S(x;, §;) free symmetric algebra + zero bracket
Koszul dual: Ai = (gAi, d, 0)

- gA = SC(X,‘,gj) cofree symmetric coalgebra + trivial cobracket
- d =0 (no linear terms in the relations)
+ curvature: 9(X; A &) = —4j;, zero otherwise.
= “small” resolution Qa = QA = (SLS°(X;.§)).d) = A
(If we had applied curved KD at the level of operads instead:
Q.BkA D (SL S°LES(x;,&),d), + resolution of the unit...)
~—

cobar bar A
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APPLICATION: DERIVED ENVELOPING ALGEBRA

Operad P + P-algebra A = notion of

Examples
P =Ass — (A,A) bimodules; P = Com — A-modules; P = Lie —
representations of the Lie algebra.

3 an associative algebra s.t. left Up(A)-modules = A-modules

Proposition

For A = Poly(T*R?[1 — n]), the derived enveloping algebra Uf; ¢ (A)
is g.iso to the underived one + explicit description.

14/15



APPLICATION: [, Poly(T*R?[1 — n])

We can also compute
/ Poly(T*Rd[l —n]) ~ LSy OH,, (UEn) (SLSC(X,-,EJ-), d)
M

15/15



APPLICATION: [, Poly(T*R?[1 — n])

We can also compute
/ Poly(T*Rd[l —n]) ~ LSy OH,, (UEn) (SLSC(X,-,EJ), d)
M
A bit of homological algebra + explicit description of LSy:

Theorem (1. 18, see also Markarian "17, D6ppenschmitt "18)
Ju Poly(T*RY[1 — n]) ~ CSE(Q"*(M) @ R(L, x;,&)) ~R.

15/15



APPLICATION: [, Poly(T*R?[1 — n])

We can also compute
/ Poly(T*Rd[l —n]) ~ LSy OH,, (UEn) (SLSC(X,-,EJ), d)
M
A bit of homological algebra + explicit description of LSy:

Theorem (1. 18, see also Markarian "17, D6ppenschmitt "18)
Ju Poly(T*RY[1 — n]) ~ CSE(Q"*(M) @ R(L, x;,&)) ~R.

Intuition: quantum observable with values in A ~ “expectation” lives
in [, A should be a number.
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THANK YOU FOR YOUR ATTENTION!

These slides, links to papers: https://idrissi.eu
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