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1 Introduction
1.1 Configuration spaces

ConfX(r) = {(x1, . . . , xr) ∈ Xr | ∀i 6= j, xi 6= xj}.
Numerous uses: • braid groups; • iterated loop spaces; • moduli spaces of complex curves;

• manifold calculus; • Gelfand–Fuks cohomology H∗
cont(Γc(M,TM)); • stable splitting of Map(A,X);

• particles in motion in physics; • motions planning…
For these applications, knowing the homotopy type of these configuration spaces is important.

Conjecture. If M ' N are two closed simply connected manifolds, then ConfM(r) ' ConfN(r).

1.2 Operadic structures
For many applications it is essential to also know the operadic structures of configuration spaces.

Definition. Operad: Diskn(r) = Emb(
⊔r Rn,Rn), Diskn ' Dn oO(n)

Definition. Right module: DiskM(r) = Emb(
⊔r Rn,M), DiskM(r) ' ConffrM (r).

Remark. Variants: Diskfrn ' Dn, DiskfrM (r) ' ConfM(r).

1.3 Rational homotopy theory
Focus on rational homotopy type of spaces.

Thanks to Sullivan’s theory, purely algebraic: M 'Q N ⇐⇒ Ω∗
PL(M) ' Ω∗

PL(N).
The same theory has been developed for operads and for right modules over operads (even if Ω∗

PL is
lax, not colax).

2 Closed manifolds
2.1 Building block: Rn

Well-known [Arnold, Cohen]: H∗(ConfRn(r)) = S(ωij)/(. . . ).

Theorem (Arnold). ConfR2(r) is formal: H∗(ConfR2(r)) ' Ω∗(ConfRn(r)), ωij 7→ d log(zi − zj)

Two questions: true for higher n? True for the operad?

Theorem (Tamarkin, Kontsevich, Lambrechts–Volić, Fresse–Willwacher, Petersen, Boavida–Horel).
The little n-disks operad is formal: H∗(DiskfrRn) ' Ω∗(DiskfrRn).
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Kontsevich’s proof:
H∗(ConfRn(r))← Graphsn(r)→ Ω∗(ConfRn(r))

Key: set all internal components to zero thanks to computations of integrals over configuration spaces.

2.2 Lambrechts–Stanley model
Model conjectured by Lambrechts–Stanley (based on earlier works by Cohen–Taylor, Bendersky–Gitler,
Kriz…). Closed manifold M , model A that satisfies Poincaré duality on the nose =⇒ GA(r) =(
A⊗r ⊗H∗(ConfRn(r))/..., d

)
Theorem. For any smooth simply connected closed manifold M , for any Poincaré duality model
A, GA(r) is a real model of ConfM(r). For n ≥ 4 and framed manifolds, compatible with operadic
structure.

Corollary (I, CW). Real homotopy invariance of Conf(−)(r) for this class of manifolds.

For n ≥ 3 this is easy (only spheres). For n ≥ 4, the proof is inspired by Kontsevich’s proof.
Roughly, build a zigzag:

GA ← GraphsR → Ω∗(ConfM).

Key point: check that internal component get sent to zero (≈ triviality of Chern–Simons invariants on
such manifolds).

2.3 Framed configurations
What to do when M is not framed?

ConfM(r) = {(x1, . . . , xr, B1, . . . , Br) ∈ ConfM(r)× FrrM | Bi : basis of Txi
M}

Already difficult for the operad:

Theorem (Ševera n = 2, Giansiracusa–Salvatore n = 2; Moriya odd n; Khoroshkin–Willwacher). The
framed little disks operads DiskRn, DiskorRn are formal for even n; DiskorRn is not formal for odd n.

The case n = 2 is simpler because one can find explicit 1-form volS1 in Ω∗(SO(2)). Idea of the KW
proof: build a graph complex model BGraphsn (graphs decorated by cohomology of BSO(n)) that
depends on integrals m (seen as a MC element in a certain deformation complex). Use obstruction
theory to show trivial in even case, nontrivial in odd case.

Adapt this for closed manifolds

Theorem (CW n = 2; CDIW). Graphical model BGraphsM for DiskorM for a smooth oriented closed
manifold M , given by graphs decorated by H∗(M) and by H∗(BSO(n)).

Problem: non-explicit Maurer–Cartan element (= value of internal components).

3 Manifolds with boundary
3.1 Gluing
M : compact manifold with boundary ∂M = N

Then DiskN×R is a (homotopy) algebra in the category of right Diskn-modules (see picture) and
DiskM is a (homotopy) module over this algebra, AKA a ”boundary module”.

Proposition. If ∂M = ∂M ′ = N then DiskM∪NM ′ = DiskM ⊗DiskN×R DiskM ′.

This can be used to find models ”inductively”.
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3.2 Graphical models
Theorem (CILW). Graphical model aGraphsN for DiskorN×R, compatible with the right module and the
algebra stuctures. Only depends on the real homotopy type of N , without conditions.

Oriented graphs decorated by a model of N , right comodule structure as usual, coalgebra structure :
cut graph in two, replace edge by half of diagonal class.
Theorem (CILW). Graphical model mGraphsM for DiskorM , compatible with the right Diskn module and
the DiskN×R module stuctures. Only depends on the real homotopy type of M if dimM ≥ 4 and M is
simply connected.

Similar description, cut graphs in two and multiply by a lift of half the diagonal class.
Remark. If dimM ≤ 3 or M is not simply connected: depends on non-explicit integrals.

3.3 Perturbed LS model
Theorem (CILW). Quotient of aGraphsM is a small, Lambrechts–Stanley-like model for configuration
spaces of M . Uses a Poincaré–Lefschetz duality model of (M,∂M). Valid if M and ∂M are simply
connected and dimM ≥ 7; also true if 4 ≤ dimM ≤ 6 if we use H∗(M) as the model.

4 Surfaces
4.1 Splitting
Any oriented surface Σg can be split as union of handles: picture.

Let A = DiskorS1×R (algebra in right Diskor2 modules) and M = DiskS2\
⊔2g D2 (boundary module).

Then DiskorΣg
is a kind of iterated Hoschild complex

⊗(1,2)...(2g−1,2g)
A M .

To modelize this algebraically, we need to know a model of Diskor
S2\

⊔2g D2 and a model of DiskorS1×R.
In both cases, they can be deduced from a model of Diskor2 as a cyclic operad to modelize the action
on the right or the left.

4.2 Cyclic formality of E2

Theorem (CIW, extendending Ševera, Giansiracusa–Salvatore). The framed little disks operad Diskor2
is formal as a cyclic operad.

Recall Tamarkin’s proof of the formality of E2:

H∗(E2)← C∗
CE(t)→ Ω∗(N•PaB).

Here t is the Drinfeld–Kohno Lie algebra and PaB is the operad of parenthesized braids. The left
map is a quotient map. The right map is built out of a Drinfeld associator:

N•PaB
Φ−→ B•GÛt ↪→ ∼MC•(t) = 〈C∗

CE(t)〉

This was adapted by Ševera to show the rational formality of Efr
2 :

N•PaRB
Φ−→ B•GÛtR ↪→ ∼MC•(t

R) = 〈C∗
CE(t

R)〉

where tR is the framed Drinfeld–Kohno algebra (add new generators tii, R 7→ et11/2/.
We just check that this is compatible with the cyclic structure and that when applying Ω∗ the result

is a quasi-isomorphism.
Corollary. The algebra DiskorS1×R is formal, the module DiskorS2\... is formal (consider fibers).

A model of DiskorΣg
is thus the iterated Hochschild complex

⊗(1,2)...(2g−1,2g)

BV ∨
1

BV ∨
(g,g).
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4.3 The model
Model: framed version of the Lambrechts–Stanley model

Gfr
S2(r) =

(
H∗(Σg)

⊗r ⊗BV ∨(r)/(. . . ), dωij = ∆ij, dθi = 2νi
)

Theorem (CIW). This is a model for DiskorΣg
as a right Diskor2 module.

Sketch of proof:

Gfr
S2

∼←−−
quot

BGraphstrivΣg

ω−→
⊗(1,2)...(2g−1,2g)

BV ∨
1

BV ∨
(g,g) ' Ω∗(DiskorΣg

).

The first map is a quotient map and is a quasi-iso by combinatorial argument. The last equivalence
follows from cyclic formality of Diskor2 .

The middle map is the key. We find an explicit ”propagator” in the iterated Hochschild complex
and we define a combinatorial ”fiber integral” map. The definition is then formally analogous to
Kontsevich’s formality map.

4.4 Interpretation
Thanks to Felder’s results, the above theorem implies that the partition function on Σg is gauge trivial.
Hence the Poisson σ model on Σg can be explicitly computed. We can also view this as a section of
GRT1 → GRT (but not for higher genus due to a lack of functoriality in the choice of base point).
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