Models for configuration spaces of manifolds

Najib Idrissi

December 11, 2019

1 Introduction

1.1 Configuration spaces

 $Conf_X(r) = \{(x_1, \dots, x_r) \in X^r \mid \forall i \neq j, \ x_i \neq x_j\}.$

Numerous uses: • braid groups; • iterated loop spaces; • moduli spaces of complex curves;

- manifold calculus; Gelfand–Fuks cohomology $H_{cont}^*(\Gamma_c(M,TM))$; stable splitting of Map(A,X);
- particles in motion in physics; motions planning...
 For these applications, knowing the homotopy type of these configuration spaces is important.

Conjecture. If $M \simeq N$ are two closed simply connected manifolds, then $\operatorname{Conf}_M(r) \simeq \operatorname{Conf}_N(r)$.

1.2 Operadic structures

For many applications it is essential to also know the operadic structures of configuration spaces.

Definition. Operad: $\mathsf{Disk}_n(r) = \mathsf{Emb}(\bigsqcup^r \mathbb{R}^n, \mathbb{R}^n)$, $\mathsf{Disk}_n \simeq D_n \rtimes O(n)$

Definition. Right module: $\mathsf{Disk}_M(r) = \mathsf{Emb}(\bigsqcup^r \mathbb{R}^n, M)$, $\mathsf{Disk}_M(r) \simeq \mathsf{Conf}_M^{fr}(r)$.

Remark. Variants: $\mathsf{Disk}_n^{fr} \simeq D_n$, $\mathsf{Disk}_M^{fr}(r) \simeq \mathsf{Conf}_M(r)$.

1.3 Rational homotopy theory

Focus on rational homotopy type of spaces.

Thanks to Sullivan's theory, purely algebraic: $M \simeq_{\mathbb{Q}} N \iff \Omega^*_{PL}(M) \simeq \Omega^*_{PL}(N)$.

The same theory has been developed for operads and for right modules over operads (even if Ω_{PL}^* is lax, not colax).

2 Closed manifolds

2.1 Building block: \mathbb{R}^n

Well-known [Arnold, Cohen]: $H^*(\operatorname{Conf}_{\mathbb{R}^n}(r)) = S(\omega_{ij})/(\ldots)$.

Theorem (Arnold). Conf_{\mathbb{R}^2}(r) is formal: $H^*(\operatorname{Conf}_{\mathbb{R}^2}(r)) \simeq \Omega^*(\operatorname{Conf}_{\mathbb{R}^n}(r)), \ \omega_{ij} \mapsto d \log(z_i - z_j)$

Two questions: true for higher n? True for the operad?

Theorem (Tamarkin, Kontsevich, Lambrechts-Volić, Fresse-Willwacher, Petersen, Boavida-Horel). The little n-disks operad is formal: $H^*(\mathsf{Disk}^{fr}_{\mathbb{R}^n}) \simeq \Omega^*(\mathsf{Disk}^{fr}_{\mathbb{R}^n})$. Kontsevich's proof:

$$H^*(\operatorname{Conf}_{\mathbb{R}^n}(r)) \leftarrow \operatorname{Graphs}_n(r) \rightarrow \Omega^*(\operatorname{Conf}_{\mathbb{R}^n}(r))$$

Key: set all internal components to zero thanks to computations of integrals over configuration spaces.

2.2 Lambrechts-Stanley model

Model conjectured by Lambrechts–Stanley (based on earlier works by Cohen–Taylor, Bendersky–Gitler, Kriz...). Closed manifold M, model A that satisfies Poincaré duality on the nose $\Longrightarrow \mathsf{G}_A(r) = (A^{\otimes r} \otimes H^*(\mathsf{Conf}_{\mathbb{R}^n}(r))/...,d)$

Theorem. For any smooth simply connected closed manifold M, for any Poincaré duality model A, $G_A(r)$ is a real model of $Conf_M(r)$. For $n \geq 4$ and framed manifolds, compatible with operadic structure.

Corollary (I, CW). Real homotopy invariance of $Conf_{(-)}(r)$ for this class of manifolds.

For $n \geq 3$ this is easy (only spheres). For $n \geq 4$, the proof is inspired by Kontsevich's proof. Roughly, build a zigzag:

$$G_A \leftarrow Graphs_R \rightarrow \Omega^*(Conf_M).$$

Key point: check that internal component get sent to zero (\approx triviality of Chern–Simons invariants on such manifolds).

2.3 Framed configurations

What to do when M is not framed?

$$\operatorname{Conf}_M(r) = \{(x_1, \dots, x_r, B_1, \dots, B_r) \in \operatorname{Conf}_M(r) \times \operatorname{Fr}_M^r \mid B_i : \text{ basis of } T_{x_i}M\}$$

Already difficult for the operad:

Theorem (Ševera n=2, Giansiracusa–Salvatore n=2; Moriya odd n; Khoroshkin–Willwacher). The framed little disks operads $\mathsf{Disk}_{\mathbb{R}^n}$, $\mathsf{Disk}_{\mathbb{R}^n}^{or}$ are formal for even n; $\mathsf{Disk}_{\mathbb{R}^n}^{or}$ is not formal for odd n.

The case n=2 is simpler because one can find explicit 1-form vol_{S^1} in $\Omega^*(SO(2))$. Idea of the KW proof: build a graph complex model $\mathsf{BGraphs}_n$ (graphs decorated by cohomology of BSO(n)) that depends on integrals m (seen as a MC element in a certain deformation complex). Use obstruction theory to show trivial in even case, nontrivial in odd case.

Adapt this for closed manifolds

Theorem (CW n = 2; CDIW). Graphical model BGraphs_M for Disk_M^{or} for a smooth oriented closed manifold M, given by graphs decorated by $H^*(M)$ and by $H^*(BSO(n))$.

Problem: non-explicit Maurer-Cartan element (= value of internal components).

3 Manifolds with boundary

3.1 Gluing

M: compact manifold with boundary $\partial M = N$

Then $\mathsf{Disk}_{N \times \mathbb{R}}$ is a (homotopy) algebra in the category of right Disk_n -modules (see *picture*) and Disk_M is a (homotopy) module over this algebra, AKA a "boundary module".

Proposition. If $\partial M = \partial M' = N$ then $\mathsf{Disk}_{M \cup_N M'} = \mathsf{Disk}_M \otimes_{\mathsf{Disk}_{N \times \mathbb{R}}} \mathsf{Disk}_{M'}$.

This can be used to find models "inductively".

3.2 Graphical models

Theorem (CILW). Graphical model $\mathsf{aGraphs}_N$ for $\mathsf{Disk}_{N \times \mathbb{R}}^{or}$, compatible with the right module and the algebra stuctures. Only depends on the real homotopy type of N, without conditions.

Oriented graphs decorated by a model of N, right comodule structure as usual, coalgebra structure: cut graph in two, replace edge by half of diagonal class.

Theorem (CILW). Graphical model $\mathsf{mGraphs}_M$ for Disk_M^{or} , compatible with the right Disk_n module and the $\mathsf{Disk}_{N \times \mathbb{R}}$ module stuctures. Only depends on the real homotopy type of M if $\dim M \geq 4$ and M is simply connected.

Similar description, cut graphs in two and multiply by a lift of half the diagonal class.

Remark. If dim M < 3 or M is not simply connected: depends on non-explicit integrals.

3.3 Perturbed LS model

Theorem (CILW). Quotient of $\mathsf{aGraphs}_M$ is a small, Lambrechts-Stanley-like model for configuration spaces of M. Uses a Poincaré-Lefschetz duality model of $(M, \partial M)$. Valid if M and ∂M are simply connected and $\dim M \geq 7$; also true if $4 \leq \dim M \leq 6$ if we use $H^*(M)$ as the model.

4 Surfaces

4.1 Splitting

Any oriented surface Σ_q can be split as union of handles: *picture*.

Let $A = \mathsf{Disk}_{S^1 \times \mathbb{R}}^{or}$ (algebra in right Disk_2^{or} modules) and $M = \mathsf{Disk}_{S^2 \setminus \bigsqcup^{2g} D^2}$ (boundary module). Then $\mathsf{Disk}_{\Sigma_q}^{or}$ is a kind of iterated Hoschild complex $\bigotimes_A^{(1,2)\dots(2g-1,2g)} M$.

To modelize this algebraically, we need to know a model of $\mathsf{Disk}^{or}_{S^2 \setminus \bigsqcup^{2g} D^2}$ and a model of $\mathsf{Disk}^{or}_{S^1 \times \mathbb{R}}$. In both cases, they can be deduced from a model of Disk^{or}_2 as a cyclic operad to modelize the action on the right or the left.

4.2 Cyclic formality of E_2

Theorem (CIW, extendending Ševera, Giansiracusa–Salvatore). The framed little disks operad Disk₂^{or} is formal as a cyclic operad.

Recall Tamarkin's proof of the formality of E_2 :

$$H^*(E_2) \leftarrow C^*_{CE}(\mathfrak{t}) \to \Omega^*(N_{\bullet}PaB).$$

Here \mathfrak{t} is the Drinfeld–Kohno Lie algebra and PaB is the operad of parenthesized braids. The left map is a quotient map. The right map is built out of a Drinfeld associator:

$$N_{\bullet}PaB \xrightarrow{\Phi} B_{\bullet} \mathbb{G}\hat{\mathbb{U}}\mathfrak{t} \hookrightarrow \sim MC_{\bullet}(\mathfrak{t}) = \langle C_{CE}^*(\mathfrak{t}) \rangle$$

This was adapted by Ševera to show the rational formality of E_2^{fr} :

$$N_{\bullet}PaRB \xrightarrow{\Phi} B_{\bullet} \mathbb{G}\hat{\mathbb{U}}\mathfrak{t}^R \hookrightarrow \sim MC_{\bullet}(\mathfrak{t}^R) = \langle C_{CE}^*(\mathfrak{t}^R) \rangle$$

where \mathfrak{t}^R is the framed Drinfeld–Kohno algebra (add new generators t_{ii} , $R \mapsto e^{t_{11}/2}$.

We just check that this is compatible with the cyclic structure and that when applying Ω^* the result is a quasi-isomorphism.

Corollary. The algebra $\mathsf{Disk}^{or}_{S^1 \times \mathbb{R}}$ is formal, the module $\mathsf{Disk}^{or}_{S^2 \setminus \dots}$ is formal (consider fibers).

A model of $\mathsf{Disk}^{or}_{\Sigma_g}$ is thus the iterated Hochschild complex $\bigotimes_{BV_1^\vee}^{(1,2)\dots(2g-1,2g)}BV_{(g,g)}^\vee$.

4.3 The model

Model: framed version of the Lambrechts-Stanley model

$$\mathsf{G}_{S^2}^{fr}(r) = \left(H^*(\Sigma_g)^{\otimes r} \otimes BV^{\vee}(r)/(\dots), d\omega_{ij} = \Delta_{ij}, d\theta_i = 2\nu_i\right)$$

Theorem (CIW). This is a model for $\mathsf{Disk}^{or}_{\Sigma_q}$ as a right Disk^{or}_2 module.

Sketch of proof:

$$\mathsf{G}^{fr}_{S^2} \xleftarrow{\sim}_{\mathrm{quot}} \mathsf{BGraphs}^{triv}_{\Sigma_g} \xrightarrow{\omega} \bigotimes\nolimits_{BV_1^\vee}^{(1,2)\dots(2g-1,2g)} BV_{(g,g)}^\vee \simeq \Omega^*(\mathsf{Disk}^{or}_{\Sigma_g}).$$

The first map is a quotient map and is a quasi-iso by combinatorial argument. The last equivalence follows from cyclic formality of $\mathsf{Disk}_2^{\mathit{or}}$.

The middle map is the key. We find an explicit "propagator" in the iterated Hochschild complex and we define a combinatorial "fiber integral" map. The definition is then formally analogous to Kontsevich's formality map.

4.4 Interpretation

Thanks to Felder's results, the above theorem implies that the partition function on Σ_g is gauge trivial. Hence the Poisson σ model on Σ_g can be explicitly computed. We can also view this as a section of $GRT_1 \to GRT$ (but not for higher genus due to a lack of functoriality in the choice of base point).