jeudi 6 janvier 2022 09:0

Goal

- We want resolutions of algebras (in a general sense).
- Why?
 - o Compute homotopical invariants: derived tensor products, derived mapping spaces, André-Quillen homology...
 - Define homotopy algebras over operads.
- Tool of choice: Koszul duality [Priddy...]

Quadratic algebras

Koszul duals

- Starting data: A = T(E)/(R), $E \subset R \otimes R$.
- Koszul dual coalgebra: $A^{i} = T^{c}(\Sigma E, \Sigma^{2} R)$.
- Often easier to write down Koszul dual algebra: $A^! = T(E^*)/(R^{\perp})$.
- Examples:
 - o A = T(E), $R = 0 \Rightarrow A^! = E^*$ with trivial multiplication.

$$\circ A = S(E) = T(E)/(xy - yx) \Longrightarrow A^! = \Lambda(E^*) = T(E^*)/(\alpha\beta + \beta\alpha).$$

- Koszul complex: $K_A = (A \otimes A^{\dagger}, d(\Sigma e) = e)$.
- A is Koszul if $\widetilde{H}(K_A) = 0$.

Resolutions

- Bar/cobar: Ω : {coaug. coalg. } \leftrightarrows {aug. alg. }: B, where $\Omega C = (T(\Sigma \bar{C}), d)$, $BA = (T^c(\Sigma \bar{A}), d)$
- Canonical resolution $\Omega BA \rightarrow A...$ but it is very big!
- A quadratic \Rightarrow canonical morphism $\Omega A^{\dagger} \rightarrow A$
- Theorem [Priddy, Positselski]: A is Koszul iff $\Omega A^i \to A$ is a quasi-isomorphism.
- Get much smaller resolutions:
 - o $A = T(E) \Rightarrow \Omega A^{\dagger} = A = T(E) \text{ vs. } \Omega BA = TT^{c}T(E).$
 - $\circ \quad A = S(E) \Rightarrow \Omega A^{\dagger} = T \Lambda^{c}(E) \text{ vs. } \Omega B A = T T^{c} S(E).$

Unital algebras

Koszul duals

- Quadratic-linear-constant algebra: $A=T_+(E)/(R)$, $R\subset E^{\bigotimes 2}\oplus E\oplus \mathbb{R}$.
- Koszul dual $A^{i} = (qA^{i}, d, \theta)$ is a curved dg-coalgebra. To define it:
- Relations split as:

$$R\ni r=\underbrace{r_{(2)}}_{\in qR}+\underbrace{r_{(1)}}_{=d\left(r_{(2)}\right)}+\underbrace{r_{(0)}}_{=\theta\left(r_{(2)}\right)}\in E^{\otimes 2}\oplus E\oplus \mathbb{R}$$

- Quadratic part: qA = T(E)/(qR) where $qR = proj_{E\otimes^2}(R)$
- o Linear part: $d: qA^{\dagger} \rightarrow qA^{\dagger}$ is a coderivation which extends $r_{(2)} \mapsto -r_{(1)}$.
- Constant part: $\theta: qA^{\dagger} \to \mathbb{R}$ satisfies $d^2 = (\theta \otimes id id \otimes \theta)\Delta$ and $\theta d = 0$.
- Example:
 - $\circ \ \ \mathsf{U}(\mathfrak{g}) = T_+(\mathfrak{g})/\big(xy-yx-\big[x,y\big]\big).$
 - $\circ qA = S(q)$
 - $\circ \ d(xy) = [x, y]$
 - We recognize $A^{i} = C_{*}^{CE}(\mathfrak{g})$.

Koszul resolutions

• Bar/cobar Ω : {curv. dg. coalg. } \rightleftarrows {semi. aug. alg}: B, where

$$\Omega C = (T_{+}(\Sigma^{-1}C), d_{2} + d_{1} + d_{0}), \quad BA = (T^{c}(\Sigma \bar{A}), d_{2} + d_{1}, \theta)$$

- Canonical resolution $\Omega BA \to A...$ but very big!
- Theorem [Polischuck–Positselski] If qA is Koszul then $\Omega A^i \to A$ is a resolution.
- Example: $A = U(\mathfrak{g})$ then $gA = S(\mathfrak{g})$ is Koszul $\Rightarrow \Omega C_*^{CE}(\mathfrak{g}) \Rightarrow U(\mathfrak{g})$ is a resolution.
- Goal: do this for more general types of algebras (e.g., Poisson algebras).

Quadratic operads

Koszul duals

- Quadratic operad: $\mathcal{P} = \operatorname{Op}(E)/(R)$ where $E \in \operatorname{Seq}$ and $R \subset E \circ_{(1)} E$.
- Example: Com = Op(μ)/ $\left(\mu(\mu(x,y),z) = \mu(x,\mu(y,z))\right)$.
- Koszul dual cooperad: $\mathcal{P}^1 = \operatorname{Op^c}(\Sigma E, \Sigma^2 R)$. Koszul dual operad: $\mathcal{P}^1 = \operatorname{Op}(E^*)/(R^{\perp})$.
- Examples: Ass! = Ass, Com! = Lie, Lie! = Com, $Pois_n!$ = $S^{n-1}Pois_n$.
- Koszul complex: $K_{\mathcal{P}} = (\mathcal{P} \circ_{(1)} \mathcal{P}^{i}, d)$. Acyclic iff \mathcal{P} is Koszul.

Koszul resolutions

- Bar/cobar Ω : {coaug. cooperads} \rightleftarrows {aug. operads}: B, where $\Omega C = (\operatorname{Op}^c(\Sigma^{-1}\bar{C}), d), \qquad B \mathcal{P} = (\operatorname{Op}(\Sigma \bar{A}), d)$
- Canonical resolution $\Omega B \mathcal{P} \to \mathcal{P}$... But very big!
- Theorem [Ginzburg-Kapranov, Getzler-Jones, Geztler] If \mathcal{P} is quadratic and Koszul, then smaller resolution $\mathcal{P}_{\infty} \coloneqq \Omega \mathcal{P}^{\dagger} \to \mathcal{P}$.
- In that case, \mathcal{P}_{∞} -algebras are called "homotopy \mathcal{P} -algebras" and have a nicer homotopy theory.

• Examples: Ass_∞ = A_∞, Com_∞ = C_∞, Lie_∞ = L_∞...

Big resolutions of algebras over operads

- $\mathcal{P} = \operatorname{Op}(E)/(R)$ a quadratic operad.
- $\kappa: \mathcal{P}^i \to \mathcal{P}$ the twisting morphism ("projection on generators")
- Bar/cobar adjunction Ω_{κ} : {coaug. \mathcal{P}^{i} coalg} \rightleftarrows {aug. \mathcal{P} alg}: B_{κ} , where

$$\Omega_{\kappa}C = (\mathcal{P}(\Sigma^{-1}\bar{C}), d), \qquad B_{\kappa}A = (\mathcal{P}^{\dagger}(\Sigma\bar{A}), d)$$

- If \mathcal{P} is Koszul, then canonical resolution of \mathcal{P} -algebras $\Omega_{\kappa}B_{\kappa}A \to A...$ but very big!
- Example: g a Lie algebra $\Rightarrow B_{\kappa}g = C_*^{CE}(g), \Omega_{\kappa}B_{\kappa}g = (\mathbb{L}C_{*-1}^{CE}(g), d).$
- Goal: smaller resolutions of algebras

Monogenic algebras

Koszul duals

- Monogenic \mathcal{P} -algebra [Millès]: $A = \mathcal{P}(V)/(S)$ where $S \subset E(V)$ $(\mathcal{P} = \operatorname{Op}(E)/(R))$.
- Remark: if \mathcal{P} is binary, then monogenic \Leftrightarrow quadratic.
- Koszul dual coalgebra: $A^{\dagger} = \Sigma \mathcal{P}^{\dagger}(V, \Sigma S)$. Dual algebra: $A^{!} = \mathcal{P}^{!}(V^{*})/(S^{\perp})$.
- If \mathcal{P} = Ass, then classical Koszul duals.
- Example for $\mathcal{P} = \text{Com: } U(A^!) = (A_{Ass})^!$ [Löfwall].
- Topological example:

$$\circ \quad \mathbf{A} = e_2^*(r) = S\Big(\omega_{ij}\Big)_{1 \le i < j \le r} / \Big(\omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ik} + \omega_{ik}\omega_{ij}\Big), \text{ then we get}$$

$$\circ \ \mathbf{A}^! = \mathbf{p}_2(r) = \mathbb{L}\left(t_{ij}\right)_{1 \le i < j \le r} / \left(\left[t_{ij}, t_{kl}\right], \left[t_{ik}, t_{ij} + t_{jk}\right]\right).$$

Koszul resolutions

- $A = \mathcal{P}(V)/(S)$ monogenic \mathcal{P} -algebra \Rightarrow Koszul complex $K_A = (A \otimes A^i, d(\Sigma v) = v)$.
- Theorem [Millès]: If $\mathcal P$ is quadratic Koszul and A is monogenic Koszul, then $\Omega_{\kappa}A^{\mathrm i} \to A$ is a resolution of A.
- Get much smaller resolutions of algebras over operads in this way.
- But still restricted to non-unital case.

Unitary operads

Setting

- Inspiration: Hirsh-Millès' Koszul duality of operads with units.
- $\mathcal{P} = \operatorname{Op}(E)/(R)$ where $R \subset (E \circ_{(1)} E) \oplus E \oplus \mathbb{R}$ id with two conditions:
 - Minimal generators: $R \cap (E \oplus \mathbb{R}id) = 0$
 - $\circ \quad \text{Maximal relations: } R = (R) \cap \Big(\big(E \circ_{(1)} E \big) \oplus E \oplus \mathbb{R} \text{id} \Big).$
- Quadratic version: $qP = \operatorname{Op}(E)/(qR)$ where $qR = \operatorname{proj}_{E^{\otimes 2}}(R)$.
- Examples:

$$\circ \quad \text{uCom} = \text{Op}(\mu, \eta) / \left(\mu\left(x, \mu(y, z)\right) = \mu(\mu(x, y), z); \ \mu(x, \eta) = x\right).$$

$$\circ \ \ \text{cLie} = \operatorname{Op}(\lambda, c) / \left(\lambda \left(x, \lambda \left(y, z\right)\right) + \lambda \left(\lambda \left(x, y\right), z\right) + \lambda \left(y, \lambda \left(x, z\right)\right); \lambda \left(x, c\right) = 0\right).$$

Koszul duals

• $\mathcal{P} = \operatorname{Op}(E)/(R), E \subset (E \circ_{(1)} E) \oplus E \oplus \mathbb{R}id$

$$\mathsf{R}\ni r=\underbrace{r_{(2)}}_{\in E^\circ(1)^E}+\underbrace{r_{(1)}}_{\phi_1\left(r_{(2)}\right)\in E}+\underbrace{r_{(0)}}_{\phi_0\left(r_{(2)}\right)\in\mathbb{R}\mathrm{id}}$$

- Curved Koszul dual dg-cooperad: $\mathcal{P}^{\dagger} = (q\mathcal{P}^{\dagger}, d, \theta)$
 - Quadratic version $q\mathcal{P} = \operatorname{Op}(E)/qR$ where $qR = \operatorname{proj}_{E\otimes 2}(R)$
 - o d: coderivation which extends $q\mathcal{P}^{\downarrow} \rightarrow \Sigma^2 qR \xrightarrow{\phi_1} \Sigma E$
 - $\circ \quad \theta \colon q\mathcal{P}^{\mathsf{i}} \to \Sigma^2 qR \overset{\phi_0}{\to} \mathbb{R}$ is the curvature
 - $\circ d^2 = (\mathrm{id} \circ_{(1)} \theta \theta \circ_{(1)} \mathrm{id}) \Delta_{(1)}, \text{ and } \theta d = 0.$
- Example: $qu\text{Com} = \text{Com} \times \mathbb{R}\eta$ (\Rightarrow big Koszul dual!), d = 0, $\theta(\mu^c \circ_1 \eta^c) = -1$.

Koszul resolutions

• Bar/cobar adjunction Ω : {curved dg. cooperads} \rightleftarrows {semi. aug. unit. operads}: B, where

$$\Omega(\mathcal{C},d,\theta) = \left(\operatorname{Op}(\Sigma^{-1}\bar{\mathcal{C}}), d_0 + d_1 + d_2 \right), \qquad \mathrm{B}\mathcal{P} = \left(\operatorname{Op}^c(\Sigma\bar{\mathcal{P}}), d_1 + d_2, \theta \right)$$

- Canonical resolution $\Omega B\mathcal{P} \to \mathcal{P}$... but very big!
- Theorem [Hirsh-Millès] If $q\mathcal{P}$ is Koszul, then $\mathcal{P}_{\infty} \coloneqq \Omega(q\mathcal{P}^{\dagger}, d, \theta) \to \mathcal{P}$ is a resolution.
- Much smaller than $\Omega B\mathcal{P}$. For example, $\mathcal{P}=u\mathrm{Ass}$: generators = A_{∞} generators with some inputs plugged by unit, differential = A_{∞} with plugged inputs distributed.

Curved Koszul duality of operadic algebras

Unital operads

- $\mathcal{P} = \operatorname{Op}(E)/(R)$ binary quadratic operad
- Unital version $u\mathcal{P} = \operatorname{Op}(E \oplus \eta)/(R + R')$ such that:
 - o $E \hookrightarrow E \oplus \eta$ induces an injection $\mathcal{P} \hookrightarrow u\mathcal{P}$
 - $\circ \quad qu\mathcal{P} \cong \mathcal{P} \oplus \eta$
 - o R' has only quadratic terms
- Examples: uCom, uAss, uLie...

Unital algebras

- $u\mathcal{P}$ -algebra with QLC relations:
 - $\circ A = u\mathcal{P}(V)/I$
 - \circ I = (S) where $S = I \cap (\eta \oplus V \oplus E(V))$
 - \circ $S \cap (\eta \oplus V) = 0$
- In particular, $S = \{x + \alpha_0(x) + \alpha_1(x) \mid x \in qS\}$ where qS is the projection onto E(V), $\alpha_0(x) \in \mathbb{R}\eta$ and $\alpha_1(x) \in V$.
- Automatically semi-augmented $\epsilon: A \to \mathbb{R}$

Curved Koszul dual

- $A^{\dagger} = (qA, d, \theta)$ with:
 - o $qA = \mathcal{P}(V)/(qS)$ has Koszul dual in sense of Millès $qA^{\dagger} = \Sigma \mathcal{P}^{\dagger}(V, \Sigma qS)$
 - o $d: qA^i \to \Sigma \mathcal{P}^i(V)$ is the unique coderivation that extends $\alpha_1 \circ \operatorname{proj}_{qS}$
 - Curvature $\theta = \alpha_0 \circ \text{proj}_{aS}$
- · Satisfies the following:
 - \circ $d(qA^{\dagger}) \subset qA^{\dagger}$
 - Generalization of $(id \otimes \theta \theta \otimes id)\Delta = d^2$, concretely:

$$d^2 = \gamma \circ (\kappa \circ' \theta) \circ \operatorname{proj}_{(2)} \circ \Delta_C$$

$$\star_{\phi}(\theta) \colon C \overset{\Delta_{C}}{\longrightarrow} \Sigma \mathcal{C} \big(\Sigma^{-1} \mathcal{C} \big) \twoheadrightarrow \Sigma \mathcal{C}(2) \otimes_{\Sigma_{2}} \big(\Sigma^{(-1)} \mathcal{C} \big) \overset{\otimes 2}{\longrightarrow} \Sigma^{2} u \mathcal{P}(2) \otimes \Sigma \mathbb{k} \eta \otimes \Sigma^{-1} \mathcal{C} \overset{\gamma_{up}}{\longrightarrow} \Sigma^{2} u \mathcal{P}(\mathcal{C})$$

Koszul resolutions

- Bar/cobar adjunction Ω_{κ} : {curved dg \mathcal{P}^i coalgebras} \rightleftarrows {semi aug \mathcal{P} algebras}: B_{κ}
- Canonical resolution $\Omega_{\kappa}B_{\kappa}A \to A...$ but very big!
- Koszul morphism $\Omega A^{\dagger} \to A$
- Theorem [I] If qA is Koszul in the sense of Millès, then $\Omega A^{\dagger} \to A$ is a resolution.

Applications

Factorization homology

- M framed n-manifold, A: algebra over uE_n
- Factorization homology of M with coefficients in A:

$$\int_{M} A = \operatorname{hocolim}_{(D^{n})^{\sqcup k} \hookrightarrow M} A^{\otimes k}$$

- Scary definition, but...
- Theorem [Ayala-Francis] $\int_M A = E_M \circ_{uE_n}^{\mathbb{L}} A = \operatorname{Tor}_{uE_n}(E_M, A)$
- Data is thus separated into three independent pieces + resolution

Formality

- Let us work over ${\mathbb R}$ and compute chains
- $C_*\left(\int_M A\right) \simeq C_*(E_M) \circ_{C_*(uE_n)}^{\mathbb{L}} C_*(A)$ because chains preserve homotopy colimits
- Theorem [Kontsevich, Tamarkin, Lambrechts-Volić, Petersen, Fresse-Willwacher, Boavida-Horel] The operad uE_n is formal, i.e., $C_*(uE_n) \simeq H_*(uE_n)$
- $H_*(uE_n) = uPois_n$ encodes unital Poisson n-algebras

Lambrechts-Stanley model

- Let M be a simply connected closed smooth manifold, $n = \dim M \ge 4$
- $P \simeq \Omega^*(M)$ CDGA which satisfies Poincaré duality at the level of cochains
- Theorem [I]. Model of $E_M(r)$, compatible with operad structure:

$$G_P(r) := \left(\frac{A^{\otimes r} \otimes S(\omega_{ij})_{1 \le i \ne j \le r}}{\omega_{ij}^2; \omega_{ji} - (-1)^n \omega_{ij}; \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij}; \left(p_i^*(x) - p_j^*(x)\right) \omega_{ij}}, d\omega_{ij} = \Delta_{ij}\right)$$

- Explicit description
 - $G_P^{\vee} \cong C_*^{CE}(P^{n-*} \otimes \text{Lie}_n[1-n]) + \text{action of Com}$
- Upshot: $C_*\left(\int_M A\right) \simeq G_P^{\vee} \circ_{u\operatorname{Pois}_n}^{\mathbb{L}} \tilde{A}$ where \tilde{A} is a $u\operatorname{Pois}_n$ -algebra representing A

Weyl *n*-algebras

• $A = \mathcal{O}_{\text{poly}} \left(T^* \mathbb{R}^d [1-n] \right) = \mathbb{R} \left[x_1, \dots, x_d, \xi_1, \dots, \xi_d \right]$ with $\left\{ x_i, \xi_j \right\} = \delta_{ij} 1$

- This algebra has a QLC presentation as a uPois $_n$ -algebra
- Quadratic version: $qA = \mathbb{R} \Big[x_i, \xi_j \Big]$ with trivial bracket. Clearly Koszul!
- Koszul dual $A^{\dagger} = (qA^{\dagger}, d, \theta)$:
 - $\circ \quad qA^{\rm i} = S^c\Big(\bar{x}_i, \bar{\xi}_j\Big) \ {\rm cofree\ symmetric\ coalgebra\ with\ trivial\ cobracket}.$
 - \circ Differential d = 0 (no linear terms in relations)
 - \circ Curvature $hetaig(ar x_i \wedge ar \xi_jig) = -\delta_{ij}$ and zero on other basis elements.
- Small resolution $Q_A = \Omega_{\kappa} A^{\mathrm{i}} = \left(SLS^c \left(\bar{x}_i, \bar{\xi}_j \right) \right) o A$
- Much smaller than if we had applied resolutions of operads: $\Omega_{\kappa}B_{\kappa}A \supset SLS^{c}L^{c}S(x_{i},\xi_{j})$, plus resolution of the unit!
- Theorem [I, see also Markarian, Döppenschmidt] $\int_{\mathbb{M}} \mathcal{O}_{\text{poly}} \left(T^* \mathbb{R}^d [1-n] \right) \simeq \mathbb{C}_*^{\text{CE}} \left(P^{n-*} \otimes \left\langle x_i, \xi_j \right\rangle \right) \simeq 0$
- Result is not unexpected: for a quantum observable with values in A, the "expectation" lives in \(\int_M A \), and it should be a single number for closed manifolds.