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Configuration spaces

M: n-manifold

Confr(M) := {(x1, . . . , xr) ∈ Mk | ∀i 6= j, xi 6= xj}
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• Braid groups
• Loop spaces
• Moduli spaces of curves
• Particles in movement [physics]
• Motion planning [robotics] 1/26



Open question

Question
Does the homotopy type of M determine the homotopy type of
Confr(M)? How to compute homotopy invariants of Confr(M)?

Non-compact manifolds
False: Conf2(R) 6∼ Conf2({0}) even though R ∼ {0}.

Closed manifolds
Longoni–Salvatore (2005): counter-example (lens spaces)… but not
simply connected.

Simply connected closed manifolds
Homotopy invariance is still open.

We can also localize: M 'Q N =⇒ Confr(M) 'Q Confr(N)?
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Configurations in a Euclidean spaces

Presentation of H∗(Confk(Rn)) [Arnold, Cohen]
• Generators: ωij of degree n− 1 (for 1 ≤ i 6= j ≤ r)
• Relations:

ω2
ij = ωji − (−1)nωij = ωijωjk + ωjkωki + ωkiωij = 0

Theorem (Arnold 1969)
Formality: H∗(Confk(C)) ∼C Ω∗

dR(Confk(C)), ωij 7→ d log(zi − zj).

Theorem (Kontsevich 1999, Lambrechts–Volić 2014)
H∗(Confk(Rn)) ∼R Ω∗

dR(Confk(Rn)) pour tout k ≥ 0 et tout n ≥ 2.

Corollary
The cohomology of Confk(Rn) determines its rational homotopy type.
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Kontsevich’s graph complexes

Arnold relations: R123 =
1

2 3

ω12ω23

+
1

2 3

ω23ω31

+
1

2 3

ω31ω12

We can represents elements of H∗(Confr(Rn)) by linear combinations of
graphs with r vertices, modulo the Rijk

 add “internal” vertices and a differential which
contracts edges incident to these new vertices:

1

2 3

d7−→ R123

Theorem (Kontsevich 1999, Lambrechts–Volić 2014 – Part 1)
We get a quasi-free CDGA Graphsn(r) and a quasi-isomorphism
Graphsn(r)

∼−→ H∗(Confr(Rn)).
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Kontsevich’s integrals

The relations Rijk are only satisfied up to homotopy in Ω∗(Confr(Rn)).
How to systematically find representatives to get
Graphsn(k)

∼−→ Ω∗(Confk(Rn))?

Let ϕ ∈ Ωn−1(Conf2(Rn)) be the volume form.
For Γ ∈ Graphsn(r) with i internal vertices:

ω(Γ) :=

∫
Confk+i(Rn)→Confk(Rn)

∧
(ij)∈EΓ

ϕij.

Theorem (Kontsevich 1999, Lambrechts–Volić 2014 – Part 2)
We get a quasi-isomorphism ω : Graphsn(k)

∼−→ Ω(Confk(Rn)).

⚠ I’m cheating! We have to compactify Confk(Rn) to make sure
∫

converges and to apply the Stokes formula correctly.
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Compactification

Problem: Confk is not compact.

Fulton–MacPherson compactification Confk(M)
∼
↪−→ FMM(k)
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M closed manifold =⇒ semi-algebraic stratified manifold dim = nk
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Animation no1
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Animation no1
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Animation no2
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Animation no2

10/26



Animation no3
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Animation no3
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Compactification of Confk(Rn)

We have to “normalize” Confk(Rn) to mitigate the non-compacity of Rn:

Confk(Rn)
∼−→ Confk(Rn)/(Rn oR>0)

∼
↪−→ FMn(k)

1

2

3
45

67
8

=⇒ semi-algebraic stratified manifold dim = nk− n− 1
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Operad

We see a new structure on FMn: an operad! We can “insert” an
infinitesimal configuration in another one:

1 2
◦2

1 2
= 1

2 3

FMn(k)× FMn(l)
◦i−→ FMn(k+ l− 1), 1 ≤ i ≤ k

Remark
Weakly equivalent to the “little disks operad”.
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Complete theorem

By functoriality, H∗(FMn) = H∗(Conf•(Rn)) and Ω∗(FMn) are Hopf
cooperads. We check that Graphsn is one too, and:

Theorem (Kontsevich 1999, Lambrechts–Volić 2014)
The operad FMn is formal over R:

Ω∗(FMn)
∼←−
ω
Graphsn

∼−→ H∗(FMn).

Formality has important applications, e.g. Deligne conjecture,
deformation quantization of Poisson manifolds, etc.

Remark
H∗(FMn) is the operad governing Poisson n-algebras for n ≥ 2.
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Poincaré duality

(Oriented) closed manifolds satisfy Poincaré duality:
Hk(M)⊗ Hn−k(M)→ R, α⊗ β 7→

∫
M αβ is non-degenerate.

Poincaré duality CDGA (A,d, ε):

• (A,d): connected finite-type CDGA (H∗(M), d = 0)

• ε : An → k s.t. ε ◦ d = 0 ∫
M(−)

• Ak ⊗ An−k → k, a⊗ b 7→ ε(ab) is non-degen ∀k. Hk(M) ⊗ Hn−k(M) → k

Theorem (Lambrechts–Stanley 2008)
Any simply connected closed manifold admits a Poincaré duality
model A ∼ Ω∗(M).
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The Lambrechts–Stanley model

M: oriented closed manifold
A ∼ Ω(M): Poincaré duality model of M

GA(r) : (conjectural) model of Confr(M) = M×k \
⋃
i 6=j∆ij

:= {xi = xj}• “Generators”: A⊗r and the ωij from Confk(Rn)
• Arnold relations + symmetry
• dωij kills the dual of [∆ij].

Examples:

• GA(0) = R is a model of Conf0(M) = {∅} X
• GA(1) = A is a model of Conf1(M) = M X

• GA(2) ∼ A⊗2/(∆A) should be a model of Conf2(M) = M2 \∆?
• r ≥ 3: more complicated.
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Brief history of GA

1969 [Arnold, Cohen] H∗(Confk(Rn)) = GH∗(Dn)(k)
1978 [Cohen–Taylor] spectral sequence starting at GH∗(M)

~1994 For smooth projective complex manifolds (=⇒ Kähler):
• [Kříž] GH∗(M)(k) is a model of Confk(M);
• [Totaro] the Cohen–Taylor SS collapses.

2004 [Lambrechts–Stanley] model for r = 2 if π≤2(M) = 0

~2004 [Félix–Thomas, Berceanu–Markl–Papadima] relation with
Bendersky–Gitler spectral sequence

2008 [Lambrechts–Stanley] Hi(GA(k)) ∼=Σk-Vect Hi(Confk(M))
2015 [Cordova Bulens] model for r = 2 if dimM = 2m
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First part of the theorem

By generalizing the proof of Kontsevich & Lambrechts–Volić:

Theorem (I.)
Let M be a closed simply connected smooth manifold. Let A be any
Poincaré duality model of M. Then GA(k) is a real model of Confr(M).

Corollaries
M ∼R N =⇒ Confk(M) ∼R Confk(N) for all k.

We can “compute everything” over R for Confr(M).

Remark
dimM ≤ 3: only spheres (Poincaré conjecture) and we know that GA is
a model, but adapting the proof is problematic!
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Modules over operads

M parallelized =⇒ FMM = {FMM(k)}k≥0 is a right FMn-module :

1

2

3

◦3 1
2

3 = 1

2

3

4
5

We can rewrite:

GA(k) = (A⊗k ⊗ H∗(FMn(k))/relations,d)

A bit of abstract nonsense:
Proposition
χ(M) = 0 =⇒ GA = {GA(k)}k≥0 is a Hopf right H∗(FMn)-comodule.

20/26



Complete version of the theorem

Theorem (I. 2016)
M: closed simply connected smooth manifold, dimM ≥ 4

GA GraphsR Ω∗
PA(FMM)

	† 	† 	‡

H∗(FMn) Graphsn Ω∗
PA(FMn)

∼ ∼

∼ ∼

† if χ(M) = 0
‡ if M is parallelized. A ∼←− R ∼−→ Ω∗

PA(M)

Conclusion
Not only do we have a model of each Confr(M), but for their richer
structure if we look at them all at once.
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Application 1: embedding spaces

Consider the space of embeddings: Emb(M,N) = {f : M ↪→ N}.

Goodwillie–Weiss manifold calculus [Boavida–Weiss, Turchin]: for
parallelized manifolds of codimension ≥ 3,

Emb(M,N) ' MorhConf•(Rn)(Conf•(M),Conf•(N)).

Since the LS model is small and explicit, hope to do computations with
these spaces.

Remark
Requires something like MorhConf•(Rn)(Conf•(M),Conf•(N)) 'R

MorhConf•(Rn)R(Conf•(M)R,Conf•(N)R)
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Application 2: factorization homology

Schematically, factorization homology = homology where ⊗ replaces ⊕.
Can be seen as “quantum observables” on M. For an En-algebra A ,∫

M
A = hocolim(Dn)tk↪→M A ⊗k.

Alternate description:
∫
M A ∼ Conf•(M)⊗hConf•(Rn) A [Francis].

Theorem (I. 2018, se also Markarian 2017, Döppenschmidt 2018)
M closed simply connected smooth manifold (dim ≥ 4),
A = Opoly(T∗Rd[1− n]) =⇒

∫
M A ∼R R.
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Generalization 1: manifolds with boundary

Theorem (Campos–I.–Lambrechts–Willwacher 2018)
For manifolds with boundary: homotopy invariance of Confr(−),
generalization of the Lambrechts–Stanley model (and more); under
good conditions, including dimM ≥ . . .

Allows to compute Confr by “induction”:

Roughly: we use 2-colored labeled graphs.
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Generalization 2: oriented manifolds

M: oriented n-manifold framed configuration space

Conffrr (M) := {(x ∈ Confr(M),B1, . . . ,Br) | Bi: orth. basis of TxiM}.

Natural action of the framed little disks operad on {Conffr• (M)}.

Theorem (Campos–Ducoulombier–I.–Willwacher 2018)
Real model of this module based on graph complexes (little hope of
analogue of Lambrechts–Stanley model…)

Should allow us to compute e.g. embedding spaces of non-parallelized
manifolds. (Not enough, though: need partially framed configurations
for the larger manifold N.)
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Complements of submanifolds

WIP: compute configuration spaces of complements N \M where
dimN− dimM ≥ 2.
Motivation: Ayala–Francis–Tanaka conjecture
Knot complement: should be related(?) to Khovanov homology.

There exists an operad VSCmn which models the local situation Rn \ Rm:

∈ VSC13(2, 2)

Theorem (I. 2018)
The operad VSCmn is formal over R.
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Thank you for your attention!

These slides: https://idrissi.eu
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