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M: n-manifold
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CONFIGURATION SPACES

M: n-manifold

Confy(r) = {(x1,...,x;) € M"| Vi #j, X; # X;}
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APPLICATIONS

Applications
Braid 7 € B, = path in Confp2(r)

J

s

More generally Confy(r) = surface braid groups
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APPLICATIONS

Applications
- braid groups;

Q"X ={y:D" = X|v(0D") = %}

— has algebraic (operadic) structure encoded by
Confpn [May, Boardman-Vogt]
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APPLICATIONS

Applications
- braid groups; Goal: compute
- iterated loop

spaces; Emb(M,N) = {f : M — N} C Map(M, N)

— “approximated” by a subspace of

] [ Map(Confy(r), Confy(r))
r>0

under good conditions
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APPLICATIONS

Applications
- braid groups;

- iterated loop
Characteristic classes of foliations live in

spaces;
+ Goodwillie- He one (Tc(M, TM))

Weiss manifold

calculus; — computed by a spectral sequence involving

configuration spaces [Cohen-Taylor]
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APPLICATIONS

Applications Want to move several robots at the same time

- braid groups;

- iterated loop

Tj}o
=)
BN

B B &

spaces;
- Goodwillie- < find a section of:

Weiss manifold

calculus; Map([0, 1], Confy(r)) — Confy(r) x Confy(r)
- Gelfand-Fuks 7~ ((0),7(1))

cohomology;

Minimum number of domains of continuity
(“topological complexity”) depends on homotopy
type of Confy(r) [Farber]
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HOMOTOPY INVARIANCE

In all these applications: we want the homotopy type of Confy(r)
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HOMOTOPY INVARIANCE

In all these applications: we want the homotopy type of Confy(r)

Long-standing conjecture
For simply connected closed manifolds M ~ N = Confu(r) ~ Confy(r)

- Obviously wrong for open manifolds: R ~ {0} but
Confg(2) 2 Confgy(2).

- Counterexample for non-simply connected manifolds:
Confy, , (r) % Conf,,(r) (Longoni-Salvatore 2005)

Some evidence:

H.(Confy(r)) v (Bodigheimer-Cohen-Taylor, Bendersky-Gitler)
QConfM( )V (Levitt)
- %>®Confy(r) v (Aouina-Klein)

3/18



RATIONAL HOMOTOPY THEORY

Rational homotopy equivalence:

f:M—=N st m(f) ® Qis an isomorphism
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Rational homotopy equivalence:

f:M—=N st m(f) ® Qis an isomorphism
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RATIONAL HOMOTOPY THEORY

Rational homotopy equivalence:

f:M—=N st m(f) ® Qis an isomorphism

Sullivan’s theory: for simply connected spaces,

M~p N <= QM) =~ Q*(N) (de Rham, PL... forms)

Model of M = comm. dg-algebra A ~ Q*(M)
— knows the rational/real homotopy type of M

Goal
Find a model of Confy(r) from a model of M.

418



CLOSED MANIFOLDS



BUILDING BLOCK: R"

Presentation of H*(Confgn(r)) [Arnold, Cohen]

- Generators: wjj of degreen — 1 (for1 <i#j<r) m
Wijj
- Relations: U
wif = wji — (=1)"wjj = wjwjk + Wirwki + Wiwjj = 0

lj
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Presentation of H*(Confgn(r)) [Arnold, Cohen]

- Generators: wjj of degreen — 1 (for1 <i#j<r) @/\
Wijj
- Relations: U
wif = wji — (=1)"wj = wijwj, + Wirwei + Weiwj = 0

ij

Theorem (Arnold 1969)
: H*(Conf(c(f’)) ~C Q*(Confc(l’)), wjj = dlog(Z,— = Z/‘).
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BUILDING BLOCK: R"

Presentation of H*(Confgn(r)) [Arnold, Cohen]

- Generators: wjj of degreen — 1 (for1 <i#j<r) @/\
Wji
- Relations: U
wif = wji — (=1)"wj = wijwj, + Wirwei + Weiwj = 0

lj

Theorem (Arnold 1969)
: H*(Conf(c(f’>) ~C Q*(Confc(l’)), wijj dlog(Z,- = Zj).

Theorem (Kontsevich 1999, Lambrechts-Voli¢ 2014)
H*(Confgrn(r)) ~r Q*(Confrn(r)) forallr >0and n > 2.

Corollary
The cohomology of Confgn(r) determines its rational homotopy type.
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IDEA OF KONTSEVICH'S PROOF

H*(Confgn(r)) <= 72?7 = Q*(Confgn(r))
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IDEA OF KONTSEVICH'S PROOF

H*(Confgn(r)) <= 7?7 = Q*(Confgn(r))

H*(Confgrn(r)): graphs on r vertices mod local three-terms relations.
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Replace relations by differentials:
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IDEA OF KONTSEVICH'S PROOF

H*(Confgn(r)) «<—— Graphs,(r) % O*(Confgn(r))

proj.

Replace relations by differentials:

Key point: integrals of internal components vanish.
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THE LAMBRECHTS-STANLEY MODEL

M: oriented closed manifold, A ~ Q*(M): Poincaré duality model of M
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M: oriented closed manifold, A ~ Q*(M): Poincaré duality model of M
LS model Ga(r): inspired by Conf,(M) = M*"\ U;{xi = x;}
- “Generators”: A®" and the wj; from Conf,(R"),

- Arnold relations + symmetry p¥(a)w; = pj‘(a)w,j,
: dw,j kills the dual of [AU]

Examples:

- Ga(0) =R is a model of Confy(M) = {&} v

- Ga(1) = Alis a model of Conf;(M) =M v

-+ Ga(2) = (A®2 DA - w2, dwis = AA) ~ A®2/(A,) should be a model
of Confy(M) = M2\ A
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THE LAMBRECHTS-STANLEY MODEL

M: oriented closed manifold, A ~ Q*(M): Poincaré duality model of M
LS model Ga(r): inspired by Conf,(M) = M*"\ U;{xi = x;}
- “Generators”: A®" and the wj; from Conf,(R"),

- Arnold relations + symmetry p¥(a)w; = pj‘(a)w,j,
: dw,j kills the dual of [AU]
Examples:
- Ga(0) =R is a model of Confy(M) = {&} v
- Ga(1) = Alis a model of Conf;(M) =M v
- Gp(2) = (A®2 DA - wia, dwio = AA) ~ A®2/(A,) should be a model
of Confy(M) = M2\ A
- r > 3: more complicated.

7118



RESULT

Theorem (I)

M: simply connected closed smooth manifold, A: any Poincaré duality
model of M, then:

Ga(r) ~r Q*(Confn(r)), Vr>o0.
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RESULT

Theorem (I)

M: simply connected closed smooth manifold, A: any Poincaré duality
model of M, then:
Ga(r) ~r Q*(Confn(r)), Vr>o0.

Corollary (I, CW)
M ~g N = Confy(r) ~g Confy(r).
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PROOF

Inspired by the ideas of Kontsevich: graphs decorated by elements of A,
replace relations by internal vertices, map into Q* by integrals

Ga(r) < Graphsg = Q*(Confy(r))

where R = resolution of A.
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PROOF

Inspired by the ideas of Kontsevich: graphs decorated by elements of A,
replace relations by internal vertices, map into Q* by integrals

Ga(r) <= Graphsp — Q*(Confy(r))

where R = resolution of A.

Need integrals of internal components to vanish = needs mM =0
and dimM > 4 by degree counting

(Rk: dimM < 3 = M = S" — different methods)

Remark

Get another bigger model: Graphsg (cf. CW).
Benefit: quasi-free, good for homological algebra.
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FRAMED CONFIGURATIONS

(X,B1,...,Br) |
Confl(r) = { x € Confy(r),

B; : basis of TyM
Useful for applications, but more complicated (already for M = R"!)
Theorem (CDIW)

Graphical model for (oriented) Conf}(r) based on graphs decorated
by cohomology classes of M + cohomology of BSO(n).
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FRAMED CONFIGURATIONS

(X,B1,...,Br) |
Confl(r) = { x € Confy(r),

B; : basis of TyM
Useful for applications, but more complicated (already for M = R"!)
Theorem (CDIW)

Graphical model for (oriented) Conf}(r) based on graphs decorated
by cohomology classes of M + cohomology of BSO(n).

Problem: depends on non-explicit integrals; no homotopy invariance
yet.

10/18



MANIFOLDS WITH BOUNDARY



MANIFOLD GLUING

Goal: compute configuration
spaces “by induction”

M = M Uyxr M”
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MANIFOLD GLUING

Goal: compute configuration
spaces “by induction”

M = M Uyxr M”

Confyxr = {Confyxg(r)}r>o is @ monoid (up to homotopy):

e Uy V3 v
. : 1
;e
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MANIFOLD GLUING

Goal: compute configuration
spaces “by induction”

M = M Uyxr M”

Confyxr = {Confyxg(r)}r>o is @ monoid (up to homotopy):

(5 ")

Confy is a left module, Confy is a right module, and:

Confy ~ Confy ®HéoanX]R Confy.
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GRAPHICAL MODELS & SMALL MODEL

Theorem (CILW)

Graphical model aGraphsy for the monoid Confyyxg, only depends on
the real homotopy type of N.
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GRAPHICAL MODELS & SMALL MODEL

Theorem (CILW)

Graphical model aGraphsy for the monoid Confyyxg, only depends on
the real homotopy type of N.

Remark: crossing with nontrivial contractible space makes Conf,
homotopy invariant [Raptis-Salvatore].
Theorem (CILW)

Graphical model mGraphs,, for the left module Confy. Only depends
on the real homotopy type of M if dimM > 4 and 7-1M = 0.
(Otherwise, depends on integrals.)

Theorem (CILW)

Quotient of mGraphs,, = small “Lambrechts-Stanley-like” model,
depends on Poincarée-Lefschetz duality model of (M, OM).
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SURFACES



SPLITTING

Only simply connected surfaces = S2. What about others?
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SPLITTING

Only simply connected surfaces = S2. What about others?
Oriented genus g surface: ’

292(52\{1,...,29})u(|i|sl x R)

i=1

- need models for Confsz\(;, . 2gy and Confsi g

- also need algebraic structure: Confsi, iSa monoid, acts on
Confs2\ {1, 29} (g times on the left, g times on the right)

- need orientation reversal on Confsi, to deal with left/right

- we do everything framed
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POINTS REMOVED

S2\ {1,...,2g} and S! x R are both instances of R? \ {points}
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POINTS REMOVED

S2\ {1,...,2g} and S! x R are both instances of R? \ {points}

= can use the fibration Confﬁj\*(r) < Confll(r + 1) — Fry to get the
homotopy type inductively from Confl, (r) ~ Confgs(r) x SO(2)"

+ cyclic formality of the little disks operad:

Theorem (CIW)

Confd, ¢y 54y @nd Confdy 5 together with all their algebraic (monoid,
orientation reversal, left/right actions) structures are formal.

14/18



RESULT

Description of g = Conffgg is an “iterated Hochschild complex”
-~ (1,1),..,(9,9)
f f
Confy, ~ ®Conffr Confga 11 ag}-

sLxr
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RESULT
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(H*(Eg)@)r ® 5(6;) ® S(wyj)/(- .. ); dwij = Ajj, d6; = (2 — 29)\’01/)-
~—~
H*(BSO(2)")
Proof: ... general rational homotopy theory, ...

. ~ ~  ~(1,1)...(q, * T
szg(r) < BVGraphsy, — ®(va) (@ g)ngg Q (Conffzg(r)).

15/18



RESULT

Description of g = Conffzrg is an “iterated Hochschild complex”

- (1,1),..,(9,9)
fr fr
Confy, ~ ®Conf‘“ Confss g1 2g}-

sLxr

Theorem (CIW)
Rational model Gfgg(r) for Confgg(r) given by:
(H*(Eg)@)r ® 5(6;) ® S(wyj)/(- .. ); dwij = Ajj, d6; = (2 — 29)\’01/)-
—~—
H*(BSO(2)")
Proof: ... graphs decorated by H*(34) and H*(BSO(2)), ...
GE (r) & = &g 9BV g ~ 07 (Conf ().

9.9 —
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RESULT

Description of g = Conffzrg is an “iterated Hochschild complex”
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fr fr
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Theorem (CIW)
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(H*(Eg)@)r ® 5(6;) ® S(wyj)/(- .. ); dwij = Ajj, d6; = (2 — 29)\’01/)-
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Proof: ... formal version of Kontsevich’s integrals, ...

T R = 1,1 ) * T
G, (r) £ BVGraphsy, — &gy 9By o ~ 0 (Contl ().
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RESULT

Description of g = Conffzrg is an “iterated Hochschild complex”
-~ (1,1),..,(9,9)
fr fr
Confzg ~ ®Conf‘“ Confsg\{17.._7zg}.

S1xR

Theorem (CIW)
Rational model Gfgg(r) for Confgg(r) given by:
(H*(Eg)@)r ® 5(6;) ® S(wyj)/(- .. ); dwij = Ajj, d6; = (2 — 29)\’01/)-
—~—
H*(BSO(2)")
Proof: ... and combinatorics.

T ~ -~ 1,1 5 * T
G, (r) < BVGraphsy, = &gy 9By o ~ 0 (Confl (1)).
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WHERE ARE OPERADS?

Need to compactify configuration spaces for integrals to converge: add
virtual configurations with infinitesimally close points

i
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WHERE ARE OPERADS?

Get a new algebraic structure: an

st
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WHERE ARE OPERADS?

Right module structure on compactification of Confy

Gl Yo

if M is parallelized; otherwise, need framed configurations.
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In previous results:

- Kontsevich's formality is compatible with the operad structure;
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WHY OPERADS?

In previous results:

- Kontsevich's formality is compatible with the operad structure;

- LS model has a right module structure compatible with
Kontsevich's formality if M is framed:;

- graphical model for Confﬁﬁ Is compatible with the
Khoroshkin-Willwacher model for the operad Confl,;

- small model for Conffgg involves Tamarkin's formality of Confg2
and Severa’s proof of formality of Confgg.

Some applications:

- Goodwillie-Weiss manifold calculus;
- factorization homology.
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