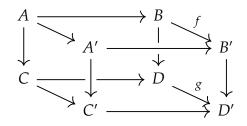
Examen

Durée : 3 heures. Les notes de cours sont autorisées. Le matériel électronique est interdit.

Exercice 1 Soit C une catégorie de modèles. Considérons un cube commutatif comme à droite.

Supposons que la face (A,B,C,D) du fond et la face (A',B',C',D') de l'avant sont des pushouts $(D=B\cup_A C$ et $D'=B'\cup_{A'} C')$. Soit $h:C\cup_A A'\to C'$ le morphisme induit par la face de gauche. Montrer que si f et h sont des cofibrations, alors g aussi.



Solution : Il suffit de montrer que g a la LLP par rapport aux fibrations acycliques. Soit un carré commutatif où p est une fibration acyclique :

$$D \longrightarrow X$$

$$g \downarrow \qquad p \downarrow \sim$$

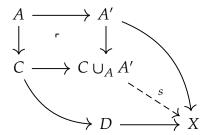
$$D' \longrightarrow Y$$

On peut considérer le diagramme élargi en rajoutant la face de droite du cube :

$$\begin{array}{ccc}
B & \longrightarrow D & \longrightarrow X \\
f \downarrow & & \downarrow & \downarrow \\
B' & \longrightarrow D' & \longrightarrow Y
\end{array}$$

Comme f est une cofibration, il existe un relèvement $l: B' \to X$ qui fait commuter les deux triangles pertinents. On peut composer l avec le morphisme $A' \to B'$ pour obtenir un morphisme $l': A' \to X$ qui fait commuter les deux triangles similaires.

Par ailleurs, on peut définir un morphisme :



Comme $h:C\cup_A C'\to C'$ est une cofibration, on peut trouver un relèvement :

$$\begin{array}{ccc}
C \cup_A C' & \xrightarrow{s} & X \\
\downarrow^h & \downarrow^t & \downarrow^r \\
C' & \xrightarrow{t} & D' & \xrightarrow{Y} & Y
\end{array}$$

En combinant $t:C'\to X$ avec $g:B'\to X$, on obtient un morphisme $D'=B'\cup_{A'}C'\to X$ qui est le relèvement voulu.

Exercice 2 Soit $F: C \to D$ et $G: D \to E$ deux adjoints de Quillen à gauche. Montrer que $G \circ F: C \to E$ est un adjoint de Quillen à gauche. Construire une transformation naturelle entre les foncteurs dérivés totaux $\mathbb{L}G \circ \mathbb{L}F \Rightarrow \mathbb{L}(G \circ F)$ et montrer que c'est un isomorphisme. (On utilisera des remplacements cofibrants fonctoriels.)

Solution : On rappelle qu'un foncteur est un adjoint de Quillen à gauche si et seulement si il préserve les cofibrations et les cofibrations acycliques. Comme F et G les préservent, $G \circ F$ aussi.

Définissons une transformation naturelle $\alpha: \mathbb{L}G \circ \mathbb{L}F \Rightarrow \mathbb{L}(G \circ F)$. Soit $\emptyset \hookrightarrow Q(X) \xrightarrow{\varepsilon_X} X$ le remplacement cofibrant fonctoriel dans C. On rappelle qu'on peut calculer $\mathbb{L}F(X)$ en considérant un remplacement cofibrant Q(X) de X; on obtient $\mathbb{L}F(X) = F(Q(X))$. Par abus de notation, on note aussi Q(-) le remplacement cofibrant dans D. On a alors :

$$\mathbb{L}G\circ\mathbb{L}F(X)=G(Q(F(Q(X)))),\quad \mathbb{L}(G\circ F)(X)=G(F(Q(X))).$$

On définit $\alpha_X : \mathbb{L}G \circ \mathbb{L}F(X) \to \mathbb{L}(G \circ F)(X)$ par :

$$\alpha_X := G(\varepsilon_{F(O(X))}) : G(Q(F(Q(X)))) \to G(F(Q(X))).$$

Cette transformation est naturelle sur C. Comme $\mathbb{L}G \circ \mathbb{L}F$ et $\mathbb{L}(G \circ F)$ préservent les équivalences faibles, la naturalité passe au quotient, et donc α est bien une transformation naturelle entre les deux foncteurs $\mathbb{L}(G \circ F)$, $\mathbb{L}G \circ \mathbb{L}F : \text{Ho}(C) \to \text{Ho}(E)$.

Comme F préserve les cofibrations et les colimites, la cofibration $\emptyset \hookrightarrow Q(X)$ est envoyée sur une cofibration $F(\emptyset) = \emptyset \hookrightarrow F(Q(X))$; en d'autres termes, F(Q(X)) est cofibrant. Le morphisme $\varepsilon_{F(Q(X))}$ est donc une équivalence faible entre objets cofibrants. Grâce au lemme de Brown, G préserve les équivalences faibles entre objets cofibrants, donc α_X est une équivalence faible, c.-à-d. un isomorphisme dans Ho(E).

Exercice 3 Soit C une catégorie de modèles et $W \in C$ un objet fixé. On note $C_{/W}$ la catégorie dont les objets sont les paires (Y,f) où $Y \in C$ et $f: Y \to W$, et $\operatorname{Hom}_{C_{/W}}((Y,f),(Z,g)) := \{h: Y \to Z \mid g \circ h = f\}$.

1. Montrer que $C_{/W}$ est une catégorie de modèles, où $h:(Y,f)\to (Z,g)$ est une équivalence faible/fibration/cofibration si c'en est une dans C. Décrire ses objets fibrants et cofibrants.

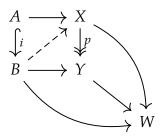
Solution:

MC1 Soit $(X_i, f_i)_{i \in I}$ un diagramme indexé par une catégorie I. La propriété universelle induit une application f: colim $_{i \in I} X_i \to W$, et on vérifie que $(\operatorname{colim}_{i \in I} X_i, f)$ est la colimite de (X_i, f_i) dans $C_{/W}$. Pour la limite, on note I_+ la catégorie à laquelle on a rajouté un objet \bot avec $\operatorname{Hom}_I(i, \bot) = *$ pour tout $i \in I$. Alors on a un diagramme $(X_i', f_i')_{i \in I_+}$ avec $X_i' = X_i, f_i' = f_i$ si $i \ne \bot$, et $X_\bot' = W$, $f_\bot = \operatorname{id}_W$. Notons $L = \lim_{i \in I_+} X_i'$; elle est munie d'une application $f: L \to X_\bot' = W$ par définition. On vérifie alors que (L, f) est la limite de (X_i, f_i) dans $C_{/W}$.

MC2 Un rétract dans $C_{/W}$ est en particulier un rétract dans $C_{/W}$.

MC3 Découle directement de l'axiome 2 parmi 3 dans C.

MC4 Considérons un diagramme commutatif dans C_{/W}:



Si i ou p est acyclique, on peut construire un relèvement en pointillés, et c'est clairement un morphisme dans $C_{/W}$.

MC5 Les factorisations de C sont des factorisations dans C_{/W}.

Un objet (X, f) est cofibrant dans $C_{/W}$ si et seulement si X est cofibrant dans C. Il est fibrant si et seulement si f est une fibration.

2. Soit $\alpha: W \to W'$ un morphisme. Il induit un foncteur $\alpha_*: C_{/W} \to C_{/W'}$ défini sur les objets par $\alpha_*(Y,f) = (Y,\alpha \circ f)$ et sur les morphismes par $\alpha_*(h) = h$. Décrire son adjoint à droite $\alpha^*: C_{/W'} \to C_{/W}$.

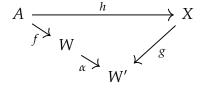
Solution : L'adjoint à droite est donné sur les objets, pour $(X,f) \in C_{W'}$ par $\alpha^*(X,f) = (X \times_{W'} W,g)$ où g est la projection $X \times_{W'} W \to W$. Sur les morphismes, pour $h:(X,f) \to (Y,g)$, on a $\alpha^*(h) = (h,\mathrm{id}_W): X \times_{W'} W \to Y \times_{W'} W$.

3. Montrer que l'adjonction $\alpha_* \dashv \alpha^*$ est une adjonction de Quillen.

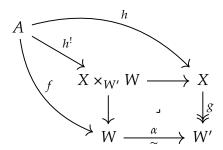
Solution : Le foncteur α_* préserve clairement les cofibrations et les cofibrations acycliques.

4. Supposons que C est propre à droite, c.-à-d. le pullback d'une équivalence faible le long d'une fibration est encore une équivalence faible. Montrer que si $\alpha: W \to W'$ est une équivalence faible, alors l'adjonction $\alpha_* \dashv \alpha^*$ est une équivalence de Quillen.

Solution : Soit $(X,f) \in C_{/W}$ un objet cofibrant (donc A est cofibrant) et $(Y,g) \in C_{/W'}$ un objet fibrant (donc g est une fibration). On doit montrer qu'un morphisme $h: (A,\alpha \circ f) \to (X,g)$ est une équivalence faible si et seulement si son adjoint $h^!: (A,f) \to (X\times_{W'}W,(g,\mathrm{id}_W))$ est une équivalence faible. On a donc un diagramme commutatif :



L'adjoint $h^!$ est le morphisme induit $A \to X \times_{W'} W$ par ce diagramme :



Comme C est propre à droite, le tiré en arrière $X \times_{W'} W \to X$ de α est une équivalence faible. On déduit donc que $h \in \mathcal{W} \iff h^! \in \mathcal{W}$ de l'axiome 2 parmi 3.

Exercice 4 Soit R et S deux anneaux et M un (R,S)-bimodule, c.-à-d. M est un R-module à gauche et un S-module à droite qui vérifie $r \cdot (m \cdot s) = (r \cdot m) \cdot s$. On définit le foncteur $T_M : \mathsf{Ch}_{\geq 0}(S) \to \mathsf{Ch}_{\geq 0}(R)$ par $(C_i, d_i)_{i \geq 0} \mapsto (M \otimes_S C_i, \mathsf{id}_M \otimes d_i)_{i \geq 0}$ avec $r \cdot (m \otimes x) = (r \cdot m) \otimes x$.

1. Montrer que T_M est un adjoint à gauche et décrire son adjoint à droite. (Indice : penser à un Hom.)

Solution : Définissons l'adjoint à droite $H_M: \operatorname{Ch}_{\geq 0}(R) \to \operatorname{Ch}_{\geq 0}(S)$. Soit $C = (C_i, d_i) \in \operatorname{Ch}_{\geq 0}(R)$ un complexe de chaînes. On définit un complexe de chaînes H_MC par :

$$(H_MC)_i := \operatorname{Hom}_R(M, C_i).$$

La différentielle de $f \in H_MC$ est donnée par (df)(m) := d(f(m)). La structure de S-module (à gauche) sur H_MC utilise la structure de S-module (à droite) de M: $(s \cdot f)(m) := f(m \cdot s)$. On peut construire un isomorphisme :

$$\varphi: \operatorname{Hom}_{\mathsf{Ch}_{>0}(S)}(T_MC, D) \to \operatorname{Hom}_{\mathsf{Ch}_{>0}(R)}(C, H_MD)$$

en définissant $\varphi(f)(x) \in H_MD$ (pour $f: T_MC \to D$ et $x \in C$) par $\varphi(f)(x): m \mapsto f(m \otimes x)$. L'application inverse est donnée par $\varphi^{-1}(g)(m \otimes x) = g(x)(m)$ (pour $g: C \to H_MD$, $m \in M$ et $x \in C$).

2. Montrer que l'adjonction est de Quillen si l'on utilise la structure projective de $\mathsf{Ch}_{\geq 0}(\cdot)$ et que M est projectif comme R-module. Est-ce vrai si M n'est pas projectif?

Solution : Montrons que H_M préserve les fibrations et les quasi-isomorphismes (et donc les fibrations acycliques). Le fait que H_M préserve les fibrations découle du fait que si $X \to Y$ est surjectif, alors $\operatorname{Hom}_R(M,X) \to \operatorname{Hom}_R(M,Y)$ est surjectif, ce qui est la définition d'être projectif. Par le lemme des cinq, il suffit de montrer que H_M envoie les suites exactes courtes sur des suites exactes courtes pour montrer qu'il préserve les quasi-isomorphismes. Si $0 \to A \to B \to C \to 0$ est une suite exacte courte, il est clair que $\operatorname{Hom}_R(M,A) \to \operatorname{Hom}_R(M,B)$ est injective et que son image est le noyau de $\operatorname{Hom}_R(M,B) \to \operatorname{Hom}_R(M,C)$. Enfin, la surjectivité de $\operatorname{Hom}_R(M,B) \to \operatorname{Hom}_R(M,C)$ découle de la projectivité de M.

L'adjonction n'est pas nécessairement de Quillen en général. Il faudrait entre autres que H_M préserve les fibrations, ce qui revient à dire que M est projectif en tant que R-module (voir ci-dessus).

3. Décrire un remplacement cofibrant du complexe de chaînes $\mathbb{Z}/n\mathbb{Z} \in \mathsf{Ch}_{>0}(\mathbb{Z})$ (en degré 0).

Solution:

$$\dots \longrightarrow C_2 \longrightarrow C_1 \longrightarrow C_0$$

$$\dots \longrightarrow 0 \longrightarrow \mathbb{Z} \xrightarrow{n \cdot} \mathbb{Z}$$

4. On admet que T_M admet un foncteur dérivé total à gauche même si M n'est pas projectif. On note $\operatorname{Tor}_i^{\mathcal{S}}(M,N) \coloneqq H_i(\mathbb{L}T_M(N))$. Calculer $\operatorname{Tor}_i^{\mathbb{Z}}(M,\mathbb{Z}/n\mathbb{Z})$ pour $i \in \mathbb{N}$.

Solution : On applique le foncteur T_M au remplacement cofibrant de $\mathbb{Z}/n\mathbb{Z}$ trouvé à la question précédente. On trouve que $\mathbb{L}T_M(\mathbb{Z}/n\mathbb{Z})$ est le complexe :

$$\dots \longrightarrow 0 \longrightarrow M \xrightarrow{n \cdot} M$$

d'où l'on en déduit que $\operatorname{Tor}_0^{\mathbb{Z}}(M, \mathbb{Z}/n\mathbb{Z}) = \operatorname{coker}(M \xrightarrow{n} M) \cong M/nM, \operatorname{Tor}_1^{\mathbb{Z}}(M, \mathbb{Z}/n\mathbb{Z}) = \ker(M \xrightarrow{n} M) = \{x \in M \mid nx = 0\}, \operatorname{et} \operatorname{Tor}_i^{\mathbb{Z}}(M, \mathbb{Z}/n\mathbb{Z}) = 0 \operatorname{pour} i \geq 2.$

Exercice 5 On note Cat la catégorie des catégories et on admettra qu'elle est complète et cocomplète. On dit qu'un foncteur $F: C \to D$ est une :

- équivalence faible si c'est une équivalence de catégories;
- cofibration si *F* est injectif sur les objets : $\forall c, c' \in C$, $F(c) = F(c') \implies c = c'$;
- fibration si c'est une isofibration : pour tout objet $c \in C$ et pour tout isomorphisme $g : F(c) \to d$, il existe un isomorphisme $f : c \to c'$ tel que F(c') = d et F(f) = g.

Solution : Inspiré de l'article *A Model Category for Categories* de Charles Rezk.

1. Soit $[0] = \{0\}$ la catégorie ayant un unique objet 0 et un unique morphisme (id_0) . Soit $I = \{0 \subseteq 1\}$ la catégorie ayant deux objets 0 et 1 et quatre morphismes, id_0 , id_1 , $f: 0 \to 1$, $g: 1 \to 0$, avec $f \circ g = id_1$ et $g \circ f = id_0$. Montrer qu'un foncteur est une fibration si et seulement si il a la propriété de relèvement à droite par rapport à $[0] \hookrightarrow I$ (c.-à-d. c'est une cofibration acyclique génératrice).

Solution : C'est simplement une reformulation de la définition.

2. Démontrer les axiomes (MC2) et (MC3) pour Cat avec cette structure de modèles.

Solution : La stabilité des équivalences et des cofibrations par rétracts est claire. Pour les fibrations, cela découle de la propriété précédente : une classe de morphismes définie par une propriété de relèvement est stable par rétracts. L'axiome 2 parmi 3 est également clair.

3. On considère un carré commutatif comme à droite, où I est une cofibration et P une fibration. On suppose d'abord que P est une fibration acyclique. Montrer que P est surjectif sur les objets puis construire un relèvement L.

Solution : Soit $b \in B$ un objet. Comme P est essentiellement surjectif, il existe $e \in E$ tel que $P(e) \cong b$. En utilisant le fait que P est une isofibration, on trouve un isomorphisme $e \cong e'$ t.q. P(e') = b.

Construisons maintenant $L: D \to E$. Comme I est injectif sur les objets et P surjectif sur les objets, on peut déjà construire le relèvement sur les objets, en posant L(d) = c si d = F(c) et en choisissant n'importe quel relèvement de G(d) sinon. Comme P est pleinement fidèle, l'application $P: \operatorname{Hom}_E(L(d), L(d')) \to \operatorname{Hom}_B(G(d), G(d'))$ est une bijection. Pour $f: d \to d'$, on pose donc $L(f) = P^{-1}(G(f)): L(d) \to L(d')$. On vérifie facilement que L ainsi défini est un foncteur qui fait commuter le diagramme.

- 4. On suppose maintenant que *I* est une cofibration acyclique.
 - (a) Montrer qu'il existe un foncteur $R: D \to C$ tel que $R \circ I = \mathrm{id}_D$ et un isomorphisme naturel $\alpha: I \circ R \Rightarrow \mathrm{id}_C$ tel que pour tout $c \in C$, $\alpha_{I(c)} = \mathrm{id}_{I(c)}$.

Solution : Définissons d'abord R sur les objets. Pour tout objet $d \in D$, on choisit un objet $R(d) \in C$ et un isomorphisme $\alpha_d : I(R(d)) \to d$ (qui existent car I est essentiellement surjectif). Si d = I(c), alors on choisit R(d) = c et $\alpha_d = \mathrm{id}_{d} = \mathrm{id}_{I(c)}$.

Le foncteur *I* est pleinement fidèle, donc

$$I: \operatorname{Hom}_{\mathbb{C}}(R(d), R(d')) \to \operatorname{Hom}_{\mathbb{D}}(I(R(d)), I(R(d')))$$

est une bijection pour tout $d, d' \in D$. Pour $f : d \to d'$, on définit $R(f) : R(d) \to R(d')$ par $R(f) = I^{-1}(\alpha_d \circ f \circ \alpha_{d'}^{-1})$. On vérifie alors facilement que R est un foncteur, que $R \circ I = \mathrm{id}_D$, et que α définit la transformation naturelle voulue.

(b) Pour $d \in D$, trouver un objet $L(d) \in E$ et un isomorphisme $\beta_d : F(R(d)) \to L(d)$ tels que LI(c) = F(c), PL(d) = G(d), $P(\beta_d) = G(\alpha_d)$ et $\beta_{I(c)} = \mathrm{id}_{F(c)}$.

Solution : Soit $d \in D$. On a $GIR(d) = PFR(d) \in B$ et un isomorphisme $G(\alpha_d) : GIR(d) = PFR(d) \to G(d)$. Comme P est une isofibration, on peut trouver un isomorphisme $\beta_d : FR(d) \to e$ tel que $P(\beta_d) = G(\alpha_d)$. On pose alors L(d) = e et on a bien PL(d) = P(e) = G(d). Au cas où d = I(c) on choisit e = F(c) et $\beta_{I(c)} = \operatorname{id}_{F(c)}$, ce qui est bien défini car I est injectif sur les objets.

(c) Terminer de construire le foncteur *L*.

Solution : Pour $f : d \to d'$, on pose $L(f) = \beta_{d'} \circ FR(f) \circ \beta_d^{-1}$.

5. Soit $F: C \to D$ un foncteur. On note \mathbb{P}_F la catégorie dont les objets sont les triplets (c, α, d) où $c \in C$, $d \in D$ et $\alpha: F(c) \to d$ est un isomorphisme; $\operatorname{Hom}_{\mathbb{P}_F}((c, \alpha, d), (c', \alpha', d')) = \operatorname{Hom}_{\mathbb{C}}(c, c')$. Construire un foncteur $I: C \to \mathbb{P}_F$ et montrer que c'est une cofibration acyclique. Construire également un foncteur $P: \mathbb{P}_F \to D$ tel que $F = P \circ I$ et montrer que P est une fibration.

Solution : On définit I par $I(c) = (c, \mathrm{id}_{F(c)}, F(c))$ sur les objets et I(f) = f sur les morphismes. Ce foncteur est clairement injectif sur les objets. Il est essentiellement surjectif : un objet (c, α, d) est isomorphe à I(c) avec le morphisme $\mathrm{id}_c : (c, \alpha, d) \to (c, \mathrm{id}_{F(c)}, F(c))$. Il est de plus clairement pleinement fidèle.

Le foncteur $P: \mathbb{P}_F \to \mathbb{D}$ est défini sur les objets par $P(c,\alpha,d) = d$ et sur les morphismes, pour $f: (c,\alpha,d) \to (c',\alpha',d')$, par $P(f) = \alpha^{-1} \circ f \circ \alpha'$. On a clairement $F = P \circ I$. Montrons que P est une isofibration. Soit (c,α,d) un objet et $f: d \to d'$ un isomorphisme. Alors $\mathrm{id}_c: (c,\alpha,d) \to (c,f \circ \alpha,d')$ est un isomorphisme qui s'envoie sur f via P.

6. Soit $F: C \to D$ un foncteur. En s'inspirant de la question précédente, construire un «objet cylindre» pour factoriser F sous la forme $C \hookrightarrow \stackrel{\sim}{\longrightarrow} D$.

Solution : On définit un «cylindre» \mathbb{C}_F comme la catégorie dont les objets sont ob $\mathbb{C} \sqcup ob \mathbb{D}$, et on a :

$$\operatorname{Hom}_{\mathbb{C}_F}(c,c') = \operatorname{Hom}_{\mathbb{D}}(F(c),F(c')), \qquad \operatorname{Hom}_{\mathbb{C}_F}(c,d) = \operatorname{Hom}_{\mathbb{D}}(F(c),d),$$

 $\operatorname{Hom}_{\mathbb{C}_F}(d,c) = \operatorname{Hom}_{\mathbb{D}}(d,F(c)), \qquad \operatorname{Hom}_{\mathbb{C}_F}(d,d') = \operatorname{Hom}_{\mathbb{D}}(d,d').$

Le foncteur $I: C \to \mathbb{C}_F$ est donné sur les objets par I(c) = c et sur les morphismes par I(f) = F(f). Il est clairement injectif sur les objets donc c'est une cofibration.

Le foncteur $P: \mathbb{C}_F \to \mathbb{D}$ est donné sur les objets par P(c) = F(c) et P(d) = d. C'est l'identité sur les morphismes. On a clairement $P \circ I = F$. Le foncteur P est essentiellement surjectif (et même surjectif sur les objets), et il est évidemment pleinement fidèle. C'est de plus une isofibration : si $x \in \mathbb{C}_F$ est un objet et $f: P(x) \to d$ est un isomorphisme, alors $f \in \operatorname{Hom}_{\mathbb{C}_F}(x,d)$ est encore un isomorphisme tel que P(f) = f.

7. Quelles catégories sont (co)fibrantes? Quand deux foncteurs sont-ils homotopes à gauche/droite?

Solution : La catégorie initiale est la catégorie vide \emptyset , et la catégorie terminale est [0]. Toute catégorie est donc cofibrante (le foncteur $\emptyset \hookrightarrow C$ est clairement injectif sur les l'objets). Toute catégorie est également fibrante, le foncteur $C \to [0]$ étant clairement une isofibration (attention au cas $C = \emptyset$).

Les relations d'homotopie à gauche et à droite coïncident donc. Supposons que deux foncteurs $F,G:C\to D$ sont homotopes, par exemple à gauche. Montrons qu'ils sont naturellement

isomorphes. Il existe donc un cylindre $C \sqcup C \xrightarrow{(I_0,I_1)} \mathbb{C} \xrightarrow{\pi} C$ et un foncteur $H : \mathbb{C} \to D$ tel que $H \circ I_0 = F$ et $H \circ I_1 = G$.

Soit $c \in C$ un objet. Le foncteur $\pi : \mathbb{C} \to C$ étant plein, il existe un morphisme $\alpha_c : I_0(c) \to I_1(c)$ tel que $\pi(\alpha_c) = \mathrm{id}_c$. De la même manière, il existe un morphisme $\beta_c : I_1(c) \to I_0(c)$ tel que $\pi(\beta_c) = \mathrm{id}_c$. En les composant, on trouve que $\pi(\beta_c\alpha_c) = \pi(\alpha_c\beta_c) = \mathrm{id}_c$. Or, on a aussi $\pi(\mathrm{id}_{I_0(c)}) = \pi(\mathrm{id}_{I_1(c)}) = \mathrm{id}_c$. Comme π est fidèle, on en déduit que $\beta_c\alpha_c = \mathrm{id}_{I_0(c)}$ et $\alpha_c\beta_c = \mathrm{id}_{I_1(c)}$, en d'autres termes α_c et β_c sont inverses l'un de l'autre.

Soit maintenant $f: c \to c'$ un morphisme. On veut vérifier que le carré suivant commute :

$$I_{0}(c) \xrightarrow{I_{0}(f)} I_{0}(c')$$

$$\downarrow^{\alpha_{c}} \qquad \downarrow^{\alpha_{c'}}$$

$$I_{1}(c) \xrightarrow{I_{1}(f)} I_{1}(c')$$

Or $\pi(\alpha_{c'} \circ I_0(f)) = \mathrm{id}_{c'} \circ f = f = f \circ \mathrm{id}_c = \pi(I_1(f) \circ \alpha_c)$, donc comme π est fidèle on trouve que le carré commute. Les deux foncteurs $I_0, I_1 : \mathbb{C} \to \mathbb{C}$ sont donc naturellement isomorphes. En composant avec H, on en déduit que F et G sont naturellement isomorphes.

Réciproquement, si l'on suppose que F et G sont naturellement isomorphes, alors on peut facilement construire une homotopie à gauche entre deux en utilisant le cylindre trouvé à la question précédente.

Finalement, deux foncteurs sont homotopes si et seulement si ils sont naturellement isomorphes.

8. Trouver un ensemble de cofibrations génératrices, c.-à-d. un ensemble \mathcal{I} tel que $\mathcal{I}^{\perp} = \mathcal{W} \cap \mathcal{F}$ (s'inspirer de la question 1). Montrer que [0] et que les sources des foncteurs de \mathcal{I} sont petits.

Solution : Soit $[1] = \{0 < 1\}$ la catégorie avec deux objets et un unique morphisme entre les deux, $\partial[1] = \{0\} \sqcup \{1\}$ la catégorie à deux objets et aucun morphisme non-identité, et $P = [1] \cup_{\partial[1]} [1] = \{0 \Rightarrow 1\}$ la catégorie à deux objets et deux morphismes du premier vers le deuxième. Alors les cofibrations génératrices sont $u : \emptyset \hookrightarrow [0], v : \partial[1] \hookrightarrow [1]$ et $w : P \to [1]$. En effet, ce sont bien des cofibrations dont une fibration acyclique a la RLP par rapport à elles. Réciproquement, si un foncteur F a la RLP par rapport à ces trois foncteurs, la RLP par rapport à u entraîne que F est surjectif sur les objets, la RLP par rapport à v entraîne que v est plein, et la RLP par rapport à v entraîne que v est plein, et la RLP par rapport à v entraîne que v est plein, et la est une isofibration.

Exercice 6 Pour A_{\bullet} , $B_{\bullet} \in sAb$, le produit tensoriel est $(A \otimes B)_k = A_k \otimes B_k$ avec $d_i = d_i \otimes d_i$ et $s_j = s_j \otimes s_j$. Le complexe normalisé N_*A est par $N_kA = A_k/(\bigcup_{j=0}^{k-1} s_j(A_{k-1}))$ et $d = \sum_{i=0}^k (-1)^i d_i : N_kA \to N_{k-1}A$. Pour $C, D \in \mathsf{Ch}_{\geq 0}(\mathbb{Z})$, on a $(C \otimes D)_n = \bigoplus_{p+q=n} C_p \otimes D_q$ et $d(x \otimes y) = dx \otimes y + (-1)^{\deg x} x \otimes dy$.

Solution : On pourra se référer à la Section 8 du Chapitre VIII du livre *Homology* de MacLane, plus particulièrement les pages 241–244. On y trouvera également la preuve que $\nabla \circ \Delta$ est homotope à l'identité, ce qui montre le théorème d'Eilenberg–Zilber : $N_*(A \otimes B) \simeq N_*A \otimes N_*B$. Ce théorème

est un point clé dans la preuve de la formule de Künneth pour l'homologie d'un produit d'espace topologiques.

1. Soit A_{\bullet} , $B_{\bullet} \in sAb$. Pour $a \in A_n$ et $b \in B_n$, on pose

$$a\bigtriangleup b:=\sum_{p+q=n}(d_{n-p+1}d_{n-p+2}\dots d_n(a))\otimes (\underbrace{d_0\dots d_0}_{n-a\text{ fois}}(b))\in \bigoplus_{p+q=n}A_p\otimes B_q.$$

Vérifier que $\Delta: N_*(A \otimes B) \to N_*A \otimes N_*B$ est compatible avec la différentielle et le quotient.

2. Soit $\mathrm{Sh}_{p,q} = \{ \sigma \in \mathfrak{S}_{p+q} \mid \sigma(1) < \dots < \sigma(p) \text{ et } \sigma(p+1) < \dots < \sigma(p+q) \}$. Par exemple $\mathrm{Sh}_{2,1} = \{(1,2,3),(1,3,2),(3,1,2)\}$. On définit $: N_*A \otimes N_*B \to N_*(A \otimes B)$ en posant, pour $a \in A_p$ et $b \in B_q$:

$$a \, \nabla \, b \coloneqq \sum_{\sigma \in \operatorname{Sh}_{p,q}} \varepsilon(\sigma) \cdot s_{\sigma(p)} s_{\sigma(p-1)} \dots s_{\sigma(1)}(a) \, \otimes s_{\sigma(p+q)} s_{\sigma(p+q-1)} \dots s_{\sigma(p+1)}(b) \in A_n \otimes B_n.$$

Vérifier que ∇ est compatible avec la différentielle et le quotient, associatif $(a \nabla (b \nabla c) = (a \nabla b) \nabla c)$, et gradué commutatif $(b \nabla a = (-1)^{\deg b \cdot \deg a} a \nabla b)$.

- 3. Montrer que $\triangle \circ \nabla$ est l'identité.
- 4. Décrire les simplexes non-dégénérés de $(\Delta^p \times \Delta^q)_{p+q}$ en termes de $\mathrm{Sh}_{p,q}$.