Corrigé du CC1

L1 MIASHS - RM2

1. Donner la définition de l'adhérence d'un ensemble.

L'adhérence \bar{A} d'un sous-ensemble $A \subset \mathbb{R}$ est constituée des points adhérents à A. Si $x \in \mathbb{R}$, on dit que x est adhérent à A si :

$$\forall \epsilon > 0, \exists a \in A, |x - a| < \epsilon.$$

2. Les ensembles suivants sont-ils voisinages de 0, ouverts et/ou fermés ? On justifiera bien chaque réponse.

a.
$$A =]1, 2[$$
.

Cet ensemble n'est pas voisinage de 0 car il ne contient pas 0. Il est ouvert car c'est un intervalle ouvert. Il n'est pas fermé : son complémentaire $\mathbb{R}\setminus A=]-\infty,1]\cup[2,+\infty[$ n'est pas ouvert, car ce n'est ni un voisinage de 1, ni de 2.

b.
$$B = [0,1[$$
.

Cet ensemble n'est pas un voisinage de 0. En effet, si $\epsilon>0$ est un réel quelconque, la boule $B(0,\epsilon)$ n'est pas incluse dans B, car elle contient $-\epsilon/2$ qui n'est pas dans B. Comme ce n'est pas un voisinage de $0 \in B$, ce n'est pas un ouvert. Enfin, il n'est pas fermé car son complémentaire $\mathbb{R} \setminus B =]-\infty, 0[\ \cup \ [1,+\infty[$ n'est pas un voisinage de son élément 1.

c.
$$C =]-\pi, \pi[\cup]1, +\infty[$$
.

Cet ensemble est un voisinage de 0, car (par exemple) $B(0,\pi) =]-\pi,\pi[$ est inclus dans C. Il est ouvert car c'est la réunion de la boule ouverte $]-\pi,\pi[$ (cf. cours) et de l'intervalle ouvert $]1,+\infty[$ (cf. cours). Ce n'est pas un fermé : son complémentaire n'est pas ouvert car ce n'est pas un voisinage de $-\pi$:

$$\mathbb{R} \setminus C = (\mathbb{R} \setminus]-\pi,\pi[) \cap (\mathbb{R} \setminus]1,+\infty[) =]-\infty,-\pi].$$

(Attention, c'est toutefois un voisinage de π !)

d.
$$D = [-2, +\infty]$$

C'est un voisinage de 0 car (par exemple) B(0,1) =]-1, 1[est inclus dans D. Ce n'est pas un ouvert car ce n'est pas un voisinage de son point -2. C'est un fermé car son complémentaire $\mathbb{R} \setminus D =]-\infty, -2[$ est ouvert (cf. cours).

- 3. Pour tout $n \ge 1$, on définit $A_n = [1 1/n, 2]$.
 - a. Pour tout $n \ge 1$, déterminer l'adhérence de A_n .

Comme A_n est fermé, il est égal à sa propre adhérence : $A_n = \bar{A}_n$.

b. L'intersection $\bigcap_{n\geq 1} A_n$ est-elle ouverte, fermée ?

Chacun des A_n est fermé, donc leur intersection est fermée (cf. cours). On peut calculer (cf. TD) que :

$$\bigcap_{n\geq 1} A_n = [1,2].$$

Ce n'est pas un ouvert car ce n'est ni un voisinage de 1, ni de 2.