Contrôle Continu 2

Algèbre – M1 Mathématiques et Informatique Cryptographique

14 novembre 2023

Durée : 1h30. Les documents et les calculatrices ne sont pas autorisés.

- **Exercice 1.** (a) Soit A un anneau et $\mathfrak p$ un idéal vérifiant la propriété suivante : pour tous idéaux I_1, I_2 de A tels que $\mathfrak p$ contienne I_1I_2 , alors $\mathfrak p$ contient I_2 . Montrer que $\mathfrak p$ est un idéal premier. Étudier la réciproque.
 - (b) Soit $f: A \to B$ un morphisme d'anneaux, et $\mathfrak r$ un idéal premier de B. Montrer que $f^{-1}(\mathfrak r)$ est un idéal premier de A. Si $\mathfrak r$ est maximal, $f^{-1}(\mathfrak r)$ est-il nécessairement maximal?

Exercice 2. Soit \mathfrak{p} un idéal premier non nul de $\mathbb{Z}[X]$.

- (a) Montrer que, pour tout $R \in \mathfrak{p}$ non nul, \mathfrak{p} contient l'un des diviseurs irréductibles de R.
- (b) Supposons que \mathfrak{p} ne contienne qu'un seul polynôme irréductible P (à inversible près). Montrer que $\mathfrak{p}=(P)$.
- (c) Montrer que si $P \in \mathbb{Z}[X]$ est un polynôme irréductible, l'idéal $\mathfrak{p} = (P)$ est premier. Quels sont les irréductibles contenus dans \mathfrak{p} ?

Dans toute la suite, on suppose que p contient au moins deux polynômes irréductibles non associés.

- (d) Soient $P,Q \in \mathbb{Z}[X]$ deux polynômes irréductibles non associés. Quel est le pgcd de P,Q dans $\mathbb{Q}[X]$? En déduire qu'il existe un entier $m \geq 1$ et des polynômes $A,B \in \mathbb{Z}[X]$ tels que A(X)P(X) + B(X)Q(X) = m.
- (e) En déduire que \mathfrak{p} contient un nombre premier p.
- (f) Soit $\varphi : \mathbb{Z}[X] \to \mathbb{F}_p[X]$ le morphisme de réduction modulo p. Montrer que $\mathfrak{q} := \varphi(\mathfrak{p})$ est un idéal et que $\mathfrak{p} = \varphi^{-1}(\mathfrak{q})$. En déduire que \mathfrak{q} est un idéal premier non nul.
- (g) Montrer que \mathfrak{p} est engendré par un couple (p, P), où $P \in \mathbb{Z}[X]$ est unitaire et $\varphi(P)$ est irréductible, et que c'est un idéal maximal de $\mathbb{Z}[X]$.
- **Exercice 3.** (a) Pour q = 2, 3, 7, décomposer le polynôme $X^3 X 1$ en produit de facteurs irréductibles dans $\mathbb{F}_q[X]$.
 - (b) Démontrer que le polynôme $X^3 6X^2 + 9X 27$ est irréductible dans $\mathbb{Z}[X]$.
 - (c) Démontrer que le polynôme $2X^3 36X^2 27X + 21$ est irréductible dans $\mathbb{Z}[X]$.
 - (d) Lorsque k est un corps, montrer que $Y^2 X^3 1$ est irréductible dans k[X, Y].