TD1: Arithmétique des entiers

Exercice 1. Combien de diviseurs le nombre 1 000 000 possède-t-il?

Exercice 2. Échauffements.

- a) Quel est le dernier chiffre de 7777⁷⁷⁷⁷ ?
- b) Quel est le reste de la division euclidienne de 900^{200} par 13 ?
- c) Déterminer $101^{102^{103}} \mod 13$, $31^{32^{33}} \mod 7$, et $100^{100^{100}} \mod 12$.

Exercice 3. Résoudre les équations diophantiennes suivantes.

a) 3x + 7y = 4;

d) 43x - 11y = 10;

g) $x^2 - 5y^2 = 3$.

b) 189x + 255y = 3;

e) xy = 2x + 3y;

c) 12x + 51y = 7;

f) $x^2 - y^2 - x + 3y = 30$;

Exercice 4. Résoudre les congruences suivantes :

a) $2x \equiv 1 \pmod{7}$;

c) $171x \equiv 7 \pmod{212}$;

b) $5x \equiv -1 \pmod{8}$;

d) $68x \equiv 100 \pmod{120}$.

Exercice 5. Résoudre les systèmes de congruences suivants :

a)
$$\begin{cases} x \equiv 2 \pmod{7} \\ x \equiv 3 \pmod{11} \end{cases}$$
, b) $\begin{cases} x \equiv 4 \pmod{21} \\ x \equiv 10 \pmod{33} \end{cases}$, c) $\begin{cases} x \equiv 3 \pmod{17} \\ x \equiv 4 \pmod{11} \end{cases}$. $\begin{cases} x \equiv 3 \pmod{17} \end{cases}$

Exercice 6. Déterminer la périodicité de la fonction g définie par $g: \mathbb{Z} \to \mathbb{Z}/7\mathbb{Z}$, $g(n) := 5^n + n$.

Trouver toutes les solutions de l'équation g(n) = 0. Une solution sans calcul fastidieux sera appréciée!

Exercice 7. Démontrer que pour tout $n \in \mathbb{N}$, $2^{3n+5} + 3^{n+1}$ est un multiple de 5.

Exercice 8. Démontrer que pour tout $n \in \mathbb{Z}$, $n^5 - n$ est un multiple de 30.

Exercice 9. Soit n un entier fixé. Démontrer que $\forall a \in \mathbb{N}$, $a^n - a \equiv 0 \pmod{n}$ si et seulement si n est sans facteur carré et si p-1 divise n-1 pour tout facteur premier p de n.

Exercice 10. Déterminer les $n \in \mathbb{N}$ tels que n+1 divise n^2+1 .

Exercice 11. Soient $a, b \in \mathbb{N}$ premiers entre eux. Démontrer que ab est un carré parfait si et seulement si a et b le sont. Si $n \in \mathbb{N}$, quand est-ce que n(n+1) est un carré parfait ?

Exercice 12. Soit $n \ge 1$ un entier. Démontrer que $a \land b = 1$ si et seulement si $a^n \land b^n = 1$.

Exercice 13. Démontrer que $a \wedge b = 1$ si et seulement si $(a + b) \wedge (ab) = 1$.

Exercice 14. (Équation diophantienne.) On considère l'équation $y(y-1)=x^2$, avec $x,y\in\mathbb{Z}$.

- a) Démontrer que si l'équation est vérifiée alors y et y-1 sont des carrés parfaits (à inversibles près).
- b) En déduire que l'équation n'admet que deux solutions que l'on déterminera.

Exercice 15. Démontrer qu'il existe des suites d'entiers consécutifs non premiers de longueur arbitraire. (Indication : n! + 2, n! + 3, n! + 4, etc.)

Exercice 16. Soit $n \ge 2$ un entier.

- a) Si n n'est pas premier, démontrer que n possède un facteur premier $\leq \sqrt{n}$.
- b) En déduire que si $10 \le n \le 100$, alors n est premier si et seulement s'il est premier avec 210.

Exercice 17. (Crible d'Ératosthène.) Pour déterminer les nombres premiers inférieurs ou égaux à un entier $n \ge 2$ fixé, on applique l'algorithme suivant. On liste tous les entiers compris entre 2 et n. Tant qu'il reste dans cette liste qui ne sont ni barrés, ni entourés, on applique l'opération suivante : on entoure le premier entier qui reste, puis on barre tous ses multiples dans la liste.

- a) Appliquer l'algorithme pour n=20 et vérifier qu'on retrouve bien les nombres premiers ≤ 20 .
- b) Démontrer que l'algorithme produit bien la liste des nombres premiers $\leq n$.
- c) Démontrer qu'on ne barre plus d'entiers si ceux qui restent sont $> \sqrt{n}$.
- d) En déduire un algorithme de complexité temporelle O(n) pour lister les premiers $\leq n$.

Exercice 18. Nombres de Mersenne.

a) Soient $a \ge 2$ et $n \ge 2$ des entiers. Démontrer que si $a^n - 1$ est premier, alors a = 2 et n est premier.

Les nombres de cette forme sont appelés les nombres de Mersenne et sont notés $M_n = 2^n - 1$.

b) Est-ce que M_2 , M_3 , M_5 , M_7 et M_{11} sont premiers?

- c) Soit p premier, $p \equiv 3 \pmod{4}$. Démontrer que 2p+1 est premier si et seulement si $2^p \equiv 1 \pmod{2p+1}$.
- d) En déduire que M_{11} , M_{23} , M_{83} et M_{131} ne sont pas premiers.

Exercice 19. Soit a > 2 un entier.

- a) Démontrer que pour tout $n \ge 2$, a 1 divise $a^n 1$.
- b) Démontrer que si $(a^n 1)/(a 1)$ est premier, alors n est premier.
- c) La réciproque est-elle vraie?

Exercice 20. (Théorème de Wilson.) Démontrer que $p \ge 2$ est premier si et seulement si $(p-1)! \equiv -1 \pmod{p}$.

Exercice 21. En quoi l'indicatrice d'Euler φ permet-elle de généraliser le petit théorème de Fermat ?

Exercice 22. (Chiffrement RSA.) Alice veut envoyer à Bob un message privé sur un réseau public. Bob choisit deux nombres premiers $p \neq q$ et note n = pq, $\lambda = (p-1) \vee (q-1)$. Il détermine un entier e premier avec λ . Il calcule un entier d tel que $de \equiv 1 \pmod{\lambda}$. Il dévoile sa clé publique (n,e) et garde secrète sa clé privée d.

Le message d'Alice pour Bob est une suite d'entiers naturels M < n. Elle calcule le message chiffré $M' = M^e \pmod{n}$ qu'elle envoie à Bob. Pour déchiffrer le message, Bob calcule $M'' = (M')^d \pmod{n}$.

a) Est-ce que Bob a correctement déchiffré le message d'Alice?

Ève a écouté l'échange! Elle sait que la clé publique de Bob est (n, e) = (851, 5) et qu'Alice a envoyé le message chiffré suivant à Bob : (2, 333, 739, 797, 333, 561, 206).

- b) Est-ce qu'Ève est en mesure de déchiffrer le message ? Que lui manque-t-il ?
- c) D'où vient la difficulté de reconstituer la clé privée à partir de la clé publique?

Exercice 23. Calculer les symboles de Legendre suivants :

a)
$$(\frac{-1}{17})$$
,

c)
$$\left(\frac{13}{17}\right)$$
,

e)
$$\left(\frac{-8}{23}\right)$$
.

b)
$$\left(\frac{2}{29}\right)$$
,

d)
$$\left(\frac{7}{19}\right)$$
,

Exercice 24.

- a) Est-ce que 1475 est un résidu quadratique modulo 2389 (qui est premier)?
- b) Soit $n \in \mathbb{N}$ tel que p = 4n + 3 et q = 2n + 1 sont premiers. Quand est-ce que 3 est une racine primitive de l'unité modulo p?

Exercice 25. Déterminer les nombres premiers p tels que 6 soit un résidu quadratique mod p.

Exercice 26. Étant donné un premier p, on s'intéresse au cardinal N_p de la courbe $\mathcal{C} = \{(x,y) \in \mathbb{Z}/p\mathbb{Z} \mid y^2 = x^3 - x\}$.

a) Démontrer que l'on a la formule :

$$N_p = p + \sum_{x \in \mathbb{T}/p\mathbb{T}} \left(\frac{x^3 - x}{p} \right).$$

b) Calculer N_7 . Généraliser le calcul aux nombres premiers p tels que $p \equiv 3 \pmod{4}$.

Exercice 27. Soit p un nombre premier impair.

a) Démontrer que la fonction suivante est une bijection :

$$\mathbb{Z}/p\mathbb{Z}\setminus\{1\}\to\mathbb{Z}/p\mathbb{Z}\setminus\{-1\}, \qquad x\mapsto \frac{1+x}{1-x}.$$

b) En déduire que l'égalité suivante est vraie :

$$\sum_{x \in \mathbb{Z}/p\mathbb{Z}} \left(\frac{1 - x^2}{p} \right) = (-1)^{(p+1)/2}.$$

c) Quel est le nombre de points du cercle unité ($x^2 + y^2 = 1$) modulo p?

Exercice 28. (Test de Solovay–Strassen) Soit $n \ge 3$ un entier impair. On définit :

$$G_n = \left\{ a \in \mathbb{Z}/n\mathbb{Z} \mid 0 \neq \left(\frac{a}{n}\right) = a^{(n-1)/2} \pmod{n} \right\}.$$

- a) Démontrer que G_n est un sous-groupe de $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- b) Si n est premier, quel est ce sous-groupe?
- c) Démontrer que la réciproque est vraie.
- d) Lorsque n n'est pas premier, démontrer que $|G_n| < (n-1)/2$.

Exercice 29. Calculer le symbole de Jacobi $\left(\frac{610}{983}\right)$. Sachant que $610^{491} \equiv 1 \pmod{983}$, est-ce que le test de Solovay-Strassen pour le témoin 610 permet de dire si 983 est premier ?

TD2: Théorie des anneaux

Exercice 1. Décrire le plus petit sous-anneau de \mathbb{C} contenant $i \in \mathbb{C}$.

Exercice 2. Soit *A* un anneau et $I, J \subset A$ des idéaux.

a) Démontrer que les sous-ensembles suivants sont des idéaux de A:

$$I \cap J$$
, $I + J = \{x + y \mid x \in I, y \in J\}$, $IJ = \{x_1y_1 + \dots + x_ny_n \mid x_i, y_i \in I\}$.

- b) Quelles relations d'inclusions existent entre $I, J, I \cap J, I + J$ et IJ?
- c) Dans le cas où $A = \mathbb{Z}$, $I = m\mathbb{Z}$ et $J = n\mathbb{Z}$ (avec $m, n \in \mathbb{Z}$), décrire ces idéaux.

Exercice 3. Soit A un anneau et $a \in A$. Démontrer que l'unique morphisme $\mathbb{Z}[X] \to A$ tel que $X \mapsto a$ est donné par $P \mapsto P(a)$.

Exercice 4. Soit A un anneau et $I_1, ..., I_n \subset A$ des idéaux non-triviaux tels que si $i \neq j$ alors $I_i + I_j = A$.

- a) Donner un exemple pour $A = \mathbb{Z}$ et n = 3.
- b) Démontrer que pour tous $x_1, ..., x_n \in A$, il existe $x \in A$ tel que $x \equiv x_i \pmod{I_i}$ pour tout i.
- c) Démontrer que $A/(I_1 \cap ... \cap I_n) \cong (A/I_1) \times ... \times (A/I_n)$.

Exercice 5. Soit A un anneau et $I \subset A$ un idéal.

- a) Démontrer que les idéaux de A/I sont de la forme J/I avec $I \subset J \subset A$ un idéal, et que l'on a $(A/I)/(J/I) \cong A/J$.
- b) Soit $B \subset A$ un sous-anneau de A. Démontrer que B+I est un sous-anneau de A et que I est un idéal de B+I.
- c) Démontrer que $B \cap I$ est un idéal de A et que $(B + I)/I \cong B/(B \cap I)$.

Exercice 6. Démontrer que les applications suivantes sont des morphismes d'anneaux et déterminer des générateurs de leurs noyaux respectifs :

- a) $f: \mathbb{K}[X] \to \mathbb{K}$, f(P) := P(a), où \mathbb{K} est un corps et $a \in \mathbb{K}$.
- b) $g: \mathbb{R}[X] \to \mathbb{C}$, g(P) := P(i).
- c) $h: \mathbb{Z}[X] \to (\mathbb{Z}/n\mathbb{Z})[X], \ h(P) := P, \text{ où } n \in \mathbb{Z}.$
- d) $j: \mathbb{Q}[X,Y] \to \mathbb{Q}, \ j(P) := P(0,1).$
- e) $k: \mathbb{R}[X,Y] \to \mathbb{R}[X], \ k(P) := P(X,X^2).$

Exercice 7. Soit K un corps.

- a) Démontrer que $\mathbb{K}[X,Y]/(X^2+Y^2-1)$ est intègre lorsque $\operatorname{car}(\mathbb{K}) \neq 2$. Est-ce un corps?
- b) Démontrer que $\mathbb{Z}[X]/(2, X^4 + X + 1)$ est un corps.
- c) Démontrer que $\mathbb{K}[X,Y]/(Y-X^2)$ est principal.
- d) Démontrer que $\mathbb{K}[X, X^{-1}] := \mathbb{K}[X, Y]/(XY 1)$ est principal.

Exercice 8. Soit \mathbb{K} un corps et $P \in \mathbb{K}[X]$ un polynôme non nul. Démontrer que $\mathbb{K}[X]/(P)$ est un \mathbb{K} -espace vectoriel de dimension $\deg(P)$.

Exercice 9. Soit $f: \mathbb{Z} \to \mathbb{Z}/14\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z}$ le morphisme canonique. Quel est le noyau et l'image de f? Expliciter l'isomorphisme inverse $\operatorname{im}(f) \to \mathbb{Z}/\ker(f)$. Faire de même pour $\mathbb{Q}[X] \to \mathbb{Q}[X]/(X^3-2) \times \mathbb{Q}[X]/(X^2+1)$.

Exercice 10. Soit V un \mathbb{K} -espace vectoriel de dimension finie et $u \in \operatorname{End}(V)$, de polynôme minimal $\mu \in \mathbb{K}[X]$.

- a) Décrire $\mathbb{K}[X]/(\mu)$ en termes d'endomorphismes de V.
- b) Démontrer que l'anneau $\mathbb{K}[X]/(\mu)$ est principal.

Exercice 11. On pose $j := \exp(2i\pi/3) \in \mathbb{C}$ et on note $\mathbb{Z}[j]$ (resp., $\mathbb{Q}[j]$) le sous-anneau (resp., sous-corps) de \mathbb{C} contenant j.

- a) Décrire les éléments de $\mathbb{Z}[j]$ et $\mathbb{Q}[j]$.
- b) Démontrer que pour tout $z \in \mathbb{C}$, il existe $w \in \mathbb{Z}[j]$ tel que |z w| < 1.
- c) Démontrer que $\mathbb{Z}[j]$ est euclidien.

Exercice 12. Soit \mathbb{K} un corps et $A = \mathbb{K}[X,Y]/(X^2,Y^2,XY)$.

- a) Déterminer les éléments inversibles de A.
- b) Déterminer les idéaux principaux de A.
- c) Déterminer tous les idéaux de A.

Exercice 13. On considère la courbe $\mathcal{C} = \{(x,y) \in \mathbb{C}^2 \mid y^2 = x^3\}$. On dit qu'une fonction $f: \mathcal{C} \to \mathbb{C}$ est polynômiale si c'est la restriction à \mathcal{C} d'une fonction polynômiale $\mathbb{C}^2 \to \mathbb{C}$.

- a) Démontrer que l'ensemble A des fonctions polynômiales sur $\mathcal C$ forme un anneau.
- b) Démontrer que A est isomorphe à l'anneau :

$$\mathbb{C}[T^2, T^3] \coloneqq \{P(T^2, T^3) \mid P \in \mathbb{C}[X, Y]\} \subset \mathbb{C}[T].$$

On pourra utiliser la paramétrisation $\mathcal{C} = \{(t^2, t^3) \mid t \in \mathbb{C}\}$. Décrire les éléments de $\mathbb{C}[T^2, T^3]$.

- c) Démontrer que A est intègre.
- d) Démontrer que les fonctions $\alpha, \beta \in A$ sont des éléments irréductibles de A:

$$\alpha(x,y) \coloneqq x, \qquad \beta(x,y) \coloneqq y.$$

- e) Soit $J = \{ f \in A \mid f(0,0) = 0 \}$. Démontrer que J est un idéal de A et déterminer une famille génératrice. Démontrer que A n'est pas principal.
- f) Démontrer que $A/J \cong \mathbb{C}$.
- g) Démontrer que $A \cong \mathbb{C}[X,Y]/(Y^2-X^3)$. Est-ce que cet anneau quotient est principal, euclidien?
- h) Est-ce que A est factoriel?

Exercice 14. Soit $A = \{x + iy\sqrt{5} \mid x, y \in \mathbb{Z}\}$. Étant donné $z \in A$, on note sa norme $N(z) \coloneqq z\bar{z}$.

- a) Démontrer que les éléments inversibles de A sont exactement les éléments de norme 1.
- b) Démontrer que tous les éléments de norme 9 sont irréductibles.
- c) Démontrer que A n'est pas factoriel. Indication : considérer des produits d'éléments de norme 9 bien choisis.

Exercice 15. On note $\xi = (1 + i\sqrt{19})/2$ et on note $\mathbb{Z}[\xi]$ le sous-anneau de \mathbb{C} engendré par ξ .

a) Démontrer que tout élément de $\mathbb{Z}[\xi]$ s'écrit de manière unique sous la forme $x + y\xi$ avec $x, y \in \mathbb{Z}$.

- b) Démontrer que pour tout $z \in \mathbb{Z}[\xi]$, le conjugué \bar{z} appartient à $\mathbb{Z}[X]$ et que la norme $z\bar{z}$ est un entier.
- c) Démontrer que $\mathbb{Z}[\xi]$ est intègre.
- d) Démontrer que $z \in \mathbb{Z}[\xi]$ est inversible si et seulement si $z\bar{z} = 1$.
- e) Étant donnés $x, y \in \mathbb{Z}$, démontrer que $x^2 + xy + 5y^2 \ge 4y^2$. En déduire que $\mathbb{Z}[\xi]^{\times} = \{\pm 1\}$.
- f) Démontrer que $\mathbb{Z}[\xi]$ est isomorphe à $\mathbb{Z}[X]/(X^2-X+5)$.

Exercice 16. Soit $d \in \mathbb{Z}$ un entier sans facteur carré.

- a) Démontrer que $\mathbb{Z}[\sqrt{d}]$ est un sous-anneau de \mathbb{C} . À quelle condition est-ce un réseau de \mathbb{C} ?
- b) On suppose désormais que d<0. Démontrer que $\nu(z)\coloneqq z\bar{z}$ est multiplicative et à valeurs dans \mathbb{N} .
- c) Démontrer que ν est un stathme euclidien si et seulement si pour tout $z \in \mathbb{Q}[\sqrt{d}]$, la boule unité centrée en z rencontre un point de $\mathbb{Z}[\sqrt{d}]$.
- d) Démontrer que cela n'est le cas que si d = -1 ou d = -2.

Exercice 17. Soit p un nombre premier impair. On rappelle que $\mathbb{Z}[i] = \mathbb{Z}[\sqrt{-1}]$ est un anneau euclidien.

- a) Démontrer que s'il existe $a, b \in \mathbb{Z}$ tels que $p = a^2 + b^2$, alors $p \equiv 1 \pmod{4}$.
- b) On suppose désormais que $p \equiv 1 \pmod{4}$. Démontrer qu'il existe $\alpha \in \mathbb{Z}$ tel que $\alpha^2 \equiv -1 \pmod{p}$.
- c) Démontrer que la fonction suivante définit un morphisme d'anneaux :

$$\mathbb{Z}[i] \to (\mathbb{Z}/p\mathbb{Z})^2$$
, $a + bi \mapsto (a + \alpha b, a - \alpha b)$.

Déterminer son noyau et son image.

d) En déduire que p est réductible dans $\mathbb{Z}[i]$ et qu'il existe $a, b \in \mathbb{Z}$ tels que $p = a^2 + b^2$.

Exercice 18. (Anneau des entiers de Gauss.)

- a) Démontrer que 1+i est irréductible dans $\mathbb{Z}[i]$. Factoriser $2 \in \mathbb{Z}[i]$. Est-ce que les irréductibles qui apparaissent sont associés ?
- b) Soit $p \equiv 3 \pmod{4}$ un nombre premier. Démontrer que p est irréductible dans $\mathbb{Z}[i]$.
- c) Soit $p \equiv 1 \pmod{1}$ un nombre premier. Démontrer que $p = \alpha \bar{\alpha}$ avec $\alpha \in \mathbb{Z}[i]$ irréductible et que α et $\bar{\alpha}$ ne sont pas associés.
- d) Soit $\alpha \in \mathbb{Z}[i]$ irréductible et $(\alpha) \subset \mathbb{Z}[i]$ l'idéal engendré par α . Démontrer que $\mathbb{Z} \cap (\alpha) = p\mathbb{Z}$ pour un nombre premier p, et que p est le seul nombre premier divisible par α dans $\mathbb{Z}[i]$.
- e) En déduire que les irréductibles de $\mathbb{Z}[i]$ sont les nombres premiers p congrus à 3 mod 4 et les entiers de Gauss de la forme $\alpha = x + iy$ avec $x^2 + y^2$ premier.
- f) Factoriser -3 + 15i dans $\mathbb{Z}[i]$.

Exercice 19. Soit $p \in \mathbb{Z}$ un nombre premier. Combien existe-t-il de couples $(a,b) \in \mathbb{Z}^2$ tels que $p=a^2+b^2$?

Exercice 20. (Évaluation 2020) Soit $A = \mathbb{Z}[i]$ l'anneau des entiers de Gauss.

- a) Faire la division euclidienne de 6 + 8i par 1 + 5i.
- b) En déduire le PGCD de 6 + 8i et 1 + 5i.
- c) Proposer une autre méthode pour calculer ce PGCD.

Exercice 21. (Évaluation 2020) Soit $A = \{ P \in \mathbb{R}[X] \mid P'(0) = 0 \}$.

- a) Démontrer que A est un anneau intègre.
- b) Quels sont les éléments inversibles de A?
- c) Démontrer que X^2 et X^3 appartiennent à A. Est-ce que X^2 divise X^3 dans A?
- d) Démontrer que X^2 et X^3 sont irréductibles dans A.
- e) Démontrer que A n'est pas factoriel.
- f) L'idéal de A engendré par X^2 est-il premier ?

Exercice 22. (Évaluation 2021) Soit A un anneau commutatif. Le nilradical de A, noté Nil(A), est l'ensemble des éléments nilpotents $\{a \in A \mid \exists m \in \mathbb{N}, \ a^m = 0\}$.

- a) Que vaut Nil(A) lorsque A est intègre?
- b) Démontrer que Nil(A) est un idéal de A.
- c) Démontrer que pour tout $a \in A, k \in \mathbb{N}, 1 a$ divise $1 a^k$.
- d) Soit $a \in Nil(A)$. Démontrer que $1 a \in A^{\times}$ et en déduire que pour tout $u \in A^{\times}$, $u + a \in A^{\times}$.
- e) Démontrer que $Nil(A) \subset Nil(A[X])$.
- f) Soit $P = a_0 + a_1 X + \dots + a_n X^n \in A[X]$ un polynôme. Démontrer que $P \in Nil(A[X])$ si et seulement si $a_0, a_1, \dots, a_n \in Nil(A)$.
- g) Soit $P = a_0 + a_1 X + \dots + a_n X^n \in A[X]$ un polynôme. Démontrer que $P \in A[X]^\times$ si et seulement si $a_0 \in A^\times$ et $a_1, \dots, a_n \in Nil(A)$.

Exercice 23. Soit A un anneau, que l'on ne suppose pas nécessairement commutatif. On dit que $a \in A$ est idempotent si $a^2 = a$. On suppose que tous les éléments de A sont idempotents.

- a) Démontrer que A est commutatif et que sa caractéristique vaut 2.
- b) Donner un exemple d'un tel anneau A.
- c) Dans quel cas A est-il intègre?
- d) Démontrer qu'on peut munir A d'une structure d'espace vectoriel sur $\mathbb{Z}/2\mathbb{Z}$. En déduire que si A est fini, alors il existe $n \in \mathbb{N}$ tel que $|A| = 2^n$.
- e) On suppose maintenant que A est un anneau commutatif quelconque, et que $A = A_1 \times A_2$ pour des anneaux $A_1, A_2 \neq \{0\}$. Démontrer que A possède au moins quatre éléments idempotents.

TD 3: Polynômes irréductibles

Exercice 1. Soit K un corps.

- a) Quels sont les polynômes irréductibles de degré ≤ 1 ?
- b) Pour $P \in \mathbb{K}[X]$ de degré 2 ou 3, démontrer que P est irréductible dans $\mathbb{K}[X]$ si et seulement si P n'a pas de racine dans \mathbb{K} .
- c) Pour $P \in \mathbb{K}[X]$ de degré ≥ 4 , y a-t-il un lien entre l'irréductibilité de P et l'absence de racine de P dans \mathbb{K} ?

Exercice 2. Quels sont les polynômes irréductibles unitaires de degré ≤ 3 sur \mathbb{F}_2 ? Sur \mathbb{F}_3 ?

Exercice 3. Soit \mathbb{K} un corps et $P \in \mathbb{K}[X]$ un polynôme non constant. Démontrer que $\mathbb{K}[X]/(P)$ est un corps si et seulement si P est irréductible.

Exercice 4. Soient \mathbb{K} un corps et $P \in \mathbb{K}[X]$ de degré $n \geq 2$.

- a) Démontrer que P est irréductible sur \mathbb{K} si, et seulement si, \mathbb{K} n'a pas de racines dans les extensions \mathbb{L} de \mathbb{K} telles que $[\mathbb{L}:\mathbb{K}] \leq n/2$.
- b) Application : Démontrer que $P(X) = X^4 + 1$ est irréductible sur \mathbb{Z} mais est réductible sur \mathbb{F}_p pour tout p premier.

Exercice 5. Soient \mathbb{K} un corps, $P \in \mathbb{K}[X]$ irréductible de degré $n \geq 2$ et \mathbb{L} une extension de degré m avec $m \wedge n = 1$. Démontrer qu'alors P est encore irréductible sur \mathbb{L} .

Exercice 6. (Description du corps à 16 éléments).

- a) Déterminer tous les polynômes irréductibles de degré 4 sur \mathbb{F}_2 .
- b) Pourquoi les anneaux $\mathbb{F}_2[X]/(X^4+X^3+X^2+X+1)$ et $\mathbb{F}_2[X]/(X^4+X+1)$ sont-ils isomorphes?
- c) Calculer l'ordre multiplicatif de la classe de X dans chacun de ces quotients.
- d) Construire un isomorphisme explicite.

Exercice 7. On considère le polynôme $P = X^4 - 2X^2 + 9$. Déterminer les racines complexes de P et une factorisation de P en polynômes irréductibles dans $\mathbb{C}[X]$. En déduire une factorisation en irréductibles dans $\mathbb{R}[X]$. Le polynôme P est-il irréductible dans $\mathbb{Q}[X]$?

Exercice 8. Factoriser en irréductibles le polynôme $1 + X^2 + X^4$ dans $\mathbb{C}[X]$. Idem dans $\mathbb{R}[X]$ puis dans $\mathbb{Q}[X]$.

Exercice 9. Démontrer que $X^3 + X + 1$ est irréductible dans $\mathbb{F}_2[X]$. En déduire que $X^3 + 24X^2 - X + 5$ est irréductible dans $\mathbb{Q}[X]$ et dans $\mathbb{Z}[X]$.

Exercice 10. Étudier l'irréductibilité des polynômes suivants dans $\mathbb{Z}[X]$ et $\mathbb{Q}[X]$:

a) $P_a = X^3 + 4X^2 - 5X + 7$;

d) $P_d = X^6 + X^3 + 1$;

b) $P_b = X^3 - 6X^2 - 4X + 13$;

e) $P_e = X^7 + X + 1$;

c) $P_c = X^4 + 5X^3 - 3X^2 - X + 7$;

f) $P_f = X^5 - 7$.

Exercice 11.

- a) Démontrer que $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ est une base de $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- b) Quel est le polynôme minimal de $\sqrt{2} + \sqrt{3}$ sur \mathbb{Q} ?

- c) En déduire que $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.
- d) Déterminer le groupe des automorphismes (de corps) de $\mathbb{Q}(\sqrt{2} + \sqrt{3})$.

Exercice 12. On considère le polynôme $\Phi_5 := 1 + X + X^2 + X^3 + X^4 \in \mathbb{Z}[X]$.

- a) Décomposer Φ_5 en irréductibles dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.
- b) Démontrer que Φ_5 est irréductible dans $\mathbb{Q}[X]$ et $\mathbb{Z}[X]$. En déduire que $\cos(2\pi/5)$ est irrationnel.
- c) Généraliser le raisonnement précédent pour démontrer que pour tout nombre premier $p \ge 5$, $\cos(2\pi/p)$ est irrationnel.

Exercice 13. Soit p un nombre premier et $a \in \mathbb{F}_p^*$. On veut démontrer que le polynôme $P = X^p - X - a$ est irréductible sur \mathbb{F}_p et sur \mathbb{Q} .

- a) Soit \mathbb{K} une extension de \mathbb{F}_p dans laquelle P possède une racine notée α . Démontrer que les racines de P dans \mathbb{K} sont α , $\alpha+1$, ..., $\alpha+p-1$.
- b) Soit $U \in \mathbb{F}_p[X]$ un polynôme unitaire de degré $d \ge 1$ qui divise P. En examinant le coefficient du terme $X^d 1$ de U, démontrer que P = U.
- c) En déduire que P est irréductible sur \mathbb{F}_p , puis sur \mathbb{Q} .

Exercice 14.

- a) Le nombre 2 est-il un carré dans \mathbb{F}_5 ?
- b) Démontrer que $P = X^2 + X + 1$ est irréductible dans $\mathbb{F}_5[X]$.
- c) Quelle est la caractéristique de \mathbb{F}_{25} ?
- d) Démontrer que le quotient $\mathbb{F}_5[X]/(P)$ est isomorphe à \mathbb{F}_{25} et que P a deux racines dans \mathbb{F}_{25} .
- e) On note α une racine de P dans \mathbb{F}_{25} . Démontrer que tout $\beta \in \mathbb{F}_{25}$ peut s'écrire de manière unique sous la forme $\beta = x + \alpha y$ avec $x, y \in \mathbb{F}_5$.
- f) Soit $Q = X^5 X + 1$. Déterminer $c, d \in \mathbb{F}_5$ tels que $Q(\alpha) = c + d\alpha$.
- g) En utilisant le résultat de la question d, démontrer que pour tout $\beta \in \mathbb{F}_{25}$, on a $Q(\beta) \neq 0$.
- h) En déduire que Q est irréductible dans $\mathbb{F}_5[X]$. Le polynôme Q est-il irréductible dans $\mathbb{Q}[X]$?
- i) Le polynôme Q est-il irréductible dans $\mathbb{F}_{25}[X]$?

Exercice 15. Soit $n \ge 1$ un entier et p un nombre premier.

- a) Soit P un polynôme irréductible de degré d dans $\mathbb{F}_p[X]$. Démontrer que le quotient $\mathbb{K} := \mathbb{F}_p[X]/(P(X))$ est un corps. Quel est l'ordre du groupe multiplicatif \mathbb{K}^\times ? En déduire que tout élément $x \in \mathbb{K}$ vérifie $x^{p^d} = x$.
- b) Démontrer ensuite que P divise $X^{p^n} X$ si et seulement si d divise n. On redémontrera un résultat du cours si nécessaire.
- c) Soit $Q_n := X^{p^n} X$. Calculer Q'_n , le polynôme dérivé de Q_n . En déduire que Q_n n'est divisible par aucun carré de polynôme de degré ≥ 1 .
- d) Démontrer que, dans $\mathbb{F}_p[X]$, le polynôme Q_n est le produit de tous les polynômes unitaires irréductibles dont le degré divise n.
- e) On prend n=4 et p=2. Retrouver l'ensemble des polynômes irréductibles de degré 2 puis 4 dans $\mathbb{F}_2[X]$.

- f) Soit P un polynôme de degré n dans $\mathbb{F}_p[X]$. Démontrer que P est irréductible si, et seulement si, les deux assertions suivantes sont vérifiées :
 - i) Le polynôme P divise Q_n .
 - ii) Pour tout diviseur premier q de n, le polynôme P est premier avec le polynôme $Q_{n/q}$.

Exercice 16. (Évaluation 2020)

- a) Questions préliminaires
 - i) Soit \mathbb{K} un corps, P un polynôme de $\mathbb{K}[X]$ de degré $n \geq 2$. Démontrer que P est irréductible si et seulement si P n'a pas de racine dans toute extension $\mathbb{L} \supset \mathbb{K}$ de degré $\leq n/2$.
 - ii) Soit $\mathbb K$ un corps à p éléments avec p premier. Soit P un polynôme irréductible de $\mathbb K[X]$. Soit $\mathbb L$ le corps de décomposition de P sur $\mathbb K$. On note $\Phi_p\colon L\to L$ l'application $x\mapsto x^p$ et on rappelle que c'est un automorphisme de corps. Démontrer que si $x\in L$ est une racine de P alors $\Phi_p(x)$ est une racine de P.
- b) On considère le polynôme $P = X^3 X 1$ sur $\mathbb{F}_3[X]$.
 - i) Démontrer que $\mathbb{F}_{27} \cong \mathbb{F}_3[X]/(P)$. On note α la classe de X dans \mathbb{F}_{27} .
 - ii) Factoriser P dans \mathbb{F}_{27} en produit de polynômes irréductibles, chacun exprimé en fonction de α .
 - iii) Est-ce que α est un générateur du groupe \mathbb{F}_{27}^{\times} ?
- c) On considère le polynôme $Q = X^9 X + 1$ sur \mathbb{F}_3 . On note \mathbb{L} son corps de décomposition.
 - i) Démontrer que le polynôme Q n'a de racines ni dans \mathbb{F}_3 ni dans \mathbb{F}_9 .
 - ii) Démontrer que les racines de Q dans \mathbb{L} sont simples.
 - iii) Démontrer que $\beta \in \mathbb{F}_{27}$ est racine de Q si et seulement si β est racine de $P = X^3 X 1$.
 - iv) Démontrer que sur \mathbb{F}_3 , le polynôme Q se factorise en Q=PR où R est un polynôme de degré 6 que l'on déterminera.
 - v) Démontrer que R est irréductible sur \mathbb{F}_3 .
 - vi) En déduire $[L: \mathbb{F}_3]$ et déterminer les sous-corps de L.
 - vii) Déterminer les groupes de Galois suivants : $Gal(L/\mathbb{F}_3)$, $Gal(L/\mathbb{F}_{27})$.

Exercice 17. (Évaluation 2021)

- a) Énoncer la division euclidienne dans $\mathbb{R}[X]$. Démontrer qu'il y a unicité des polynômes intervenant dans l'écriture de la division euclidienne.
- b) Soient $P_1 = X^3 2X^2 2X 3$ et $P_2 = X^2 2X 3$ des polynômes de $\mathbb{R}[X]$. En appliquant l'algorithme d'Euclide, déterminer le PGCD de P_1 et P_2 .
- c) Décomposer en produits d'irréductibles P_1 et P_2 dans $\mathbb{R}[X]$. En déduire une autre méthode pour déterminer leur PGCD.

Exercice 18. (Évaluation 2021) On considère trois polynômes de $\mathbb{Z}[X]$:

$$P_1 = X^6 - 5X + 20$$
, $P_2 = X^4 + 4X^3 - 6X^2 + 5X + 1$, $P_3 = X^3 - 3X^2 - X + 1$.

- a) Étudier l'irréductibilité des polynômes P_1, P_2, P_3 dans $\mathbb{Q}[X]$.
- b) Est-ce que P_3 est irréductible dans $\mathbb{R}[X]$?

TD 4 : Extensions de corps, corps finis, théorie de Galois

Exercice 1. Quels sont les idéaux d'un corps ? Montrer qu'un morphisme d'anneaux entre deux corps est toujours injectif.

Exercice 2. Les réels e et π sont transcendants. Que peut-on en déduire de l'extension $\mathbb{Q} \subset \mathbb{R}$?

Exercice 3. Soit $\mathbb{K} \subset \mathbb{L}$ une extension de degré impair. Démontrer que si $a \in \mathbb{K}$ est un carré dans \mathbb{L} , alors c'est un carré dans \mathbb{K} .

Exercice 4. Calculer les corps de rupture et de décomposition des polynômes suivants, et donner les degrés des extensions correspondantes :

a)
$$P_1 = X^2 + 7$$
.

e)
$$P_5 = X^4 - 1$$
.

i)
$$P_0 = X^4 - 5X^2 + 6$$
.

b)
$$P_2 = X^3 - 2$$
.

f)
$$P_6 = X^4 + 2$$
.

j)
$$P_{10} = X^p - 1$$
 (où p est premier).

c)
$$P_3 = X^3 - 11$$
.

g)
$$P_7 = X^4 - 2$$
.

h)
$$P_8 = X^4 + X^2 + 1$$
.

d) $P_4 = X^4 + 1$.

Exercice 5. Les assertions suivantes sont-elles vraies ou fausses? Justifier la réponse par une démonstration ou un contre-exemple.

- a) Deux corps de rupture d'un polynôme sont isomorphes.
- b) Deux corps de rupture d'un polynôme irréductible sont isomorphes à unique isomorphisme près.
- c) Deux corps de décomposition d'un polynôme sont isomorphes.
- d) Deux corps de décomposition d'un polynôme sont isomorphes à unique isomorphisme près.
- e) Le corps de rupture d'un polynôme irréductible est isomorphe à son corps de décomposition.
- f) Il existe une fonction $f: \mathbb{N} \to \mathbb{N}$ telle que pour tout corps \mathbb{K} , pour tout polynôme $P \in \mathbb{K}[X]$, le degré du corps de décomposition de P sur \mathbb{K} est majoré par $\deg(f(P))$.

Exercice 6. Soit \mathbb{K} un corps et $P \in \mathbb{K}[X]$. À quel condition l'anneau quotient $\mathbb{K}[X]/(P)$ est-il un corps ? Dans ce cas, quel est le degré de l'extension $\mathbb{K} \subset \mathbb{K}[X]/(P)$?

Exercice 7. Existe-t-il un corps à 8 éléments ? 9 éléments ? 12 éléments ?

Exercice 8. Soit q, q' deux puissances de nombres premiers. À quelle condition le corps $\mathbb{F}_{q'}$ est-il une extension de \mathbb{F}_q ?

Exercice 9. Déterminer les degrés des extensions suivantes :

- a) $\mathbb{Q} \subset \mathbb{Q}(\sqrt{5})$.
- b) $\mathbb{Q} \subset \mathbb{Q}(\sqrt[n]{5}).$
- c) $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2} + \sqrt{5})$.
- d) $\mathbb{Q} \subset \mathbb{Q}(i+\sqrt{5})$.

Exercice 10. Quels sont les sous-corps de \mathbb{F}_{64} ? Combien existe-t-il de générateurs de l'extension $\mathbb{F}_2 \subset \mathbb{F}_{64}$, c'est-à-dire d'éléments $x \in \mathbb{F}_{64}$ tels que $\mathbb{F}_{64} = \mathbb{F}_2(x)$? Combien le groupe \mathbb{F}_{64}^{\times} a-t-il de générateurs? Est-ce qu'il y a un lien entre ces deux notions?

Exercice 11. Soit $\mathbb{K} \subset \mathbb{L}$ une extension finie de corps.

- a) Si [L: K] est un nombre premier, démontrer que l'extension est monogène.
- b) Soit $P \in \mathbb{K}[X]$ un polynôme irréductible. Démontrer que si $\deg(P)$ et $[\mathbb{L}: \mathbb{K}]$ sont premiers entre eux, alors P est irréductible sur \mathbb{L} .
- c) Soit $\alpha \in \mathbb{K}$ un élément algébrique de degré impair. Démontrer que $\mathbb{K}(\alpha) = \mathbb{K}(\alpha^2)$.

Exercice 12. Corps à huit, neuf et seize éléments.

- a) Dresser une liste de tous les polynômes irréductibles de degré ≤ 4 sur les corps \mathbb{F}_2 et \mathbb{F}_3 .
- b) Parmi les polynômes précédents, lesquels ont pour corps de rupture \mathbb{F}_9 et \mathbb{F}_8 ? Écrire la table de multiplication du corps correspondant dans ces cas.
- c) Donner des isomorphismes explicites entre les corps ainsi obtenus.
- d) Dans chacun des cas, est-ce que l'élément primitif canonique (la classe de X dans le quotient $\mathbb{K}[X]/(P)$) est-il un générateur de \mathbb{K}^{\times} ?
- e) Démontrer que \mathbb{F}_8^{\times} est cyclique.
- f) Démontrer que tous les éléments de \mathbb{F}_8 sont algébriques sur \mathbb{F}_2 est donner leurs polynômes minimaux.
- g) Reprendre les trois dernières questions en remplaçant \mathbb{F}_8 par \mathbb{F}_{16} .

Exercice 13. Démontrer que les extensions suivantes sont galoisiennes, déterminer leur degré et leur groupe de Galois :

a)
$$\mathbb{R} \subset \mathbb{C}$$
.

c)
$$\mathbb{Q} \subset \mathbb{Q}(\exp(2i\pi/n))$$
 (où $n \geq 2$).

b) $\mathbb{F}_q \subset \mathbb{F}_{q^n}$.

Exercice 14. On considère l'extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{3}, \sqrt{5})$. Quel est son degré? Démontrer que c'est une extension galoisienne. Déterminer ses sous-corps. Déterminer un élément primitif.

Exercice 15. On note $\alpha = \sqrt[4]{2}$ et $\beta = \sqrt[5]{2}$ et on pose $\mathbb{K} = \mathbb{Q}(\alpha) \subset \mathbb{L} = \mathbb{Q}(\alpha, \beta)$.

- a) Déterminer les polynômes minimaux P et Q de α et β sur \mathbb{Q} . Quelles sont les racines (complexes) de ces polynômes ?
- b) On note $\mathbb{L}' \subset \mathbb{C}$ le sous-corps engendré par les racines de P et Q. Combien y-a-t-il de morphismes $\mathbb{L} \to \mathbb{L}'$? Décrire les.
- c) Déterminer le polynôme minimal de β sur $\mathbb{Q}(\alpha)$.
- d) Que vaut $[\mathbb{L}:\mathbb{Q}]$?
- e) Déterminer $Gal(\mathbb{K}/\mathbb{Q})$ et $Gal(\mathbb{L}/\mathbb{Q})$.
- f) Les extensions $\mathbb{Q} \subset \mathbb{K}$ et $\mathbb{Q} \subset \mathbb{L}$ sont-elles galoisiennes ?

TD 5: Formes normales

Exercice 1. Faire le lien entre la multiplication par l'une des matrices qui suivent avec les opérations élémentaires :

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ b & a & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & b & 1 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

- a) $L_1 \leftrightarrow L_2$
- b) $L_1 \leftarrow L_1 + \alpha L_2$
- c) $L_2 \leftarrow L_2 + \alpha L_1$
- d) $L_1 \leftarrow L_2, L_2 \leftarrow L_3$, et $L_3 \leftarrow L_1$
- e) $L_1 \leftarrow L_1 + \alpha L_2$ et $L_3 \leftarrow L_3 + \beta L_2$
- f) $L_3 \leftarrow L_3 + \alpha L_1 + \beta L_2$

- g) $C_1 \leftrightarrow C_2$
- h) $C_1 \leftarrow C_1 + \alpha C_2$
- i) $C_2 \leftarrow C_2 + \alpha C_1$
- j) $C_1 \leftarrow C_2, C_2 \leftarrow C_3$, et $C_3 \leftarrow C_1$
- k) $C_1 \leftarrow C_1 + \alpha C_2$ et $C_3 \leftarrow C_3 + \beta C_2$
- $l) \quad C_3 \leftarrow C_3 + \alpha C_1 + \beta C_2$

Exercice 2. À quelle matrice correspond l'opération $C_i \leftarrow \sum_{j=1}^n a_j C_j$? L'opération $L_i \leftarrow \sum_{j=1}^n a_j L_j$?

Exercice 3.

- a) Est-ce que l'ensemble des matrices inversibles à coefficients entiers forme un sous-groupe de $GL_2(\mathbb{R})$?
- b) Calculer le produit $\binom{a}{c}\binom{d}{d}\binom{d}{-c}\binom{d}{a}$ et en déduire que si $a,b,c,d\in\mathbb{Z}$, alors l'inverse de $\binom{a}{c}\binom{d}{d}$ est à coefficients entiers si et seulement si $ad-bc=\pm 1$.
- c) En déduire que $GL_2(\mathbb{Z}) = \{ A \in \mathcal{M}_2(\mathbb{R}) \mid \det(A) = \pm 1 \}.$
- d) Vérifier que les matrices du premier exercice sont unimodulaires (de déterminant ± 1).

Exercice 4. À l'aide d'opérations élémentaires, sur les lignes et les colonnes, déterminer les formes normales de Smith des matrices suivantes :

a)
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

d)
$$D = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$$

b)
$$B = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$$

e)
$$E = \begin{pmatrix} 1 & 2 & 2 \\ -3 & 3 & 6 \\ 5 & -2 & -8 \end{pmatrix}$$

c)
$$C = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$

Exercice 5. Soit $A = \langle v_1, ..., v_r \rangle \leq \mathbb{Z}^p$ un sous-groupe de \mathbb{Z}^p engendré par une famille $(v_1, ..., v_r)$ de vecteurs (colonnes) $v_i \in \mathbb{Z}^p$. Pour déterminer une base de A, il suffit de considérer la matrice $M \in \mathcal{M}_{p,r}(\mathbb{Z})$ dont les colonnes sont les v_i , d'échelonner cette matrice **en effectuant des opérations sur les colonnes uniquement** et de garder les colonnes non nulles. Appliquer cette procédure aux deux sous-groupes suivants :

- a) Le sous-groupe $A_1 \leq \mathbb{Z}^3$ engendré par $v_1 = (1,0,-1), v_2 = (4,3,-1), v_3 = (0,9,3),$ et $v_4 = (3,12,3).$
- b) Le sous-groupe $A_2 \le \mathbb{Z}^4$ engendré par $w_1 = (9, 1, 4, 7), w_2 = (6, 2, 5, 8)$ et $w_3 = (12, 4, 8, 10)$.

Exercice 6. Soit $A = \langle v_1, ..., v_r \rangle \leq \mathbb{Z}^p$ et M comme dans l'exercice précédent. Pour obtenir la structure de groupe abélien de \mathbb{Z}^p/A , il suffit de : (i) calculer la forme normale de Smith UMV = D de la matrice M; (ii)

TD 5 : Formes normales 13 novembre 2023 1/2

les coefficients diagonaux de D sont notés $d_1 \mid d_2 \mid \cdots \mid d_s$, où $s = \min(r, p)$; (iii) le quotient est isomorphe à $\mathbb{Z}/d_1\mathbb{Z} \times ... \times \mathbb{Z}/d_s\mathbb{Z} \times \mathbb{Z}^{p-s}$ (avec $\mathbb{Z}/1\mathbb{Z} = 0$ et $\mathbb{Z}/0\mathbb{Z} = \mathbb{Z}$).

Reprendre les sous-groupes A_1 et A_2 de l'exercice précédent et déterminer la structure des quotients.

Exercice 7. Soit $A=\langle v_1,\dots,v_r\rangle\leq \mathbb{Z}^p$ et M comme dans l'exercice précédent. On dit qu'une base $\left(e_1,\dots,e_p\right)$ de \mathbb{Z}^p est une base adaptée à A si A est engendrée par la famille (d_1e_1,\dots,d_pe_p) où les d_i sont les facteurs invariants (on omet d_ie_i si $d_i=0$, et on note $d_i=0$ si i>r).

On en détermine une de la façon suivante : (i) on calcule la forme normale de Smith UMV=D; (ii) la matrice $U\in \mathrm{GL}_p(\mathbb{Z})$ représente les opérations effectuées sur les lignes, que l'on garde en mémoire ; (iii) les colonnes de U^{-1} forment alors une base de \mathbb{Z}^p adaptée à A.

Reprendre les sous-groupes A_1 et A_2 de l'exercice précédent et déterminer une base adaptée de \mathbb{Z}^p dans chacun des cas.

Exercice 8. Déterminer tous les groupes abéliens (à isomorphisme près) d'ordre 72.