Épreuve de contrôle continu n°1 - Corrigé

Sujet A

MARDI 6 JANVIER 2024

Durée: 45 minutes

- Documents, calculettes et échanges par moyens électroniques sont strictement prohibés.
- Une attention particulière sera portée à la rigueur du raisonnement et à la qualité de la rédaction.

Exercice 1. (Question de cours) Soit A une partie de \mathbb{R} . On note B l'ensemble des points adhérents à A. Montrer que B est un fermé.

Solution. On rappelle que:

$$B = \{x \in \mathbb{R} \mid \forall r > 0, B(x, r) \cap A \neq \emptyset\}.$$

Il s'agit de démontrer que B est fermé, ou en d'autres termes que $\mathbb{R} \setminus B$ est ouvert. Soit $x \in \mathbb{R} \setminus B$; nous voulons donc démontrer que $\mathbb{R} \setminus B$ est un voisinage de x, ou encore qu'il existe r > 0 tel que $B(x, r) \subseteq \mathbb{R} \setminus B$. Or, $x \notin B$, donc il existe r > 0 tel que $B(x, r) \cap A = \emptyset$. Mais alors $B(x, r) \subseteq \mathbb{R} \setminus B$ et nous avons bien démontré que $\mathbb{R} \setminus B$ est un voisinage de x.

Exercice 2. Pour chacune des parties A de \mathbb{R} suivantes, déterminer **en le justifiant** si A est ouverte, fermée et en calculer l'adhérence, l'intérieur et la frontière, lorsque A vaut :

a)
$$\mathbb{N}$$
 b) $\left\{\frac{1}{2^n}, n \in \mathbb{N}\right\} \cup \{0\}$ c) $]-3,1]$ d) $]-\infty,0] \cap \mathbb{Q}$.

Solution. a) L'ensemble $\mathbb N$ n'est pas ouvert car il n'existe pas de boule ouverte centrée en un point de $\mathbb N$ qui soit incluse dans $\mathbb N$. En effet, si $n \in \mathbb N$ et r > 0, alors $\mathbb B(n,r)$ est un intervalle non vide et non réduit à un singleton, donc il contient au moins un irrationnel (et a fortiori un nombre qui n'est pas un entier naturel). $\mathbb N$ On en déduit en particulier que $\mathbb N$ n'est un voisinage d'aucun de ses points et que $\mathbb N$ = \emptyset . En revanche, $\mathbb N$ est fermé, car on peut écrire son complémentaire comme une réunion d'intervalles ouverts :

$$\mathbb{R}\setminus\mathbb{N}=]-\infty,0[\cup\bigcup_{n\in\mathbb{N}}]\,n,n+1[.$$

On en déduit que $\bar{\mathbb{N}} = \mathbb{N}$, et enfin que $\partial \mathbb{N} = \mathbb{N}$.

b) Comme $A \subseteq \mathbb{Q}$, par le même raisonnement qu'à la question précédente, A n'est pas ouvert et $\mathring{A} = \varnothing$. Il est en revanche fermé, car on peut écrire son complémentaire comme une réunion d'intervalles ouverts :

$$\mathbb{R} \setminus A =]-\infty, 0[\cup]1, +\infty[\cup \bigcup_{n \in \mathbb{N}}]1/2^{n+1}, 1/2^{n}[.$$

On a donc $\bar{A} = A = \partial A$.

^{1.} On peut aussi démontrer que $\mathring{\mathbb{N}} = \emptyset$ en notant que c'est un ouvert contenu dans \mathbb{Q} , et qu'on a démontré en cours que $\mathring{\mathbb{Q}} = \emptyset$.

c) L'ensemble A n'est ni ouvert, ni fermé. En effet, A n'est pas un voisinage de 1, car toute boule de la forme B(1, r) (avec r > 0) contient un réel x > 1, par exemple x = 1 + r/2. De plus, $\mathbb{R} \setminus A =]-\infty, -3] \cup]1, +\infty[$ n'est pas un voisinage de -3, car toute boule de la forme B(-3, r) (avec r > 0) contient un réel $x \in A$, par exemple $x = -3 + \min(r, 1)/2$.

Les raisonnements précédents démontrent que $1 \notin \mathring{A}$ et $-3 \in \bar{A}$. On en déduit que :

- On a $\mathring{A} \subseteq]-3,1[$. Or, \mathring{A} est le plus grand ouvert contenu dans A, et]-3,1[est un ouvert contenu dans A, donc $\mathring{A} =]-3,1[$.
- On a $\bar{A} \supseteq [-3,1]$. Or, \bar{A} est le plus petit fermé contenant A, et [-3,1] est un fermé contenant A, donc $\bar{A} = [-3,1]$.

Enfin, on trouve que $\partial A = [-3, 1] \setminus [-3, 1] = \{-3, 1\}$.

d) Par le même raisonnement qu'aux deux premières questions, A n'est pas ouvert et $\mathring{A} = \emptyset$. De plus, A n'est pas fermé. En effet, tous les réels négatifs sont adhérents à A, y compris les irrationnels ; étant donné $x \le 0$, les approximations décimales de x définissent une suite (u_n) à valeurs dans A telle que $\lim u_n = x$. En particulier, on a $\bar{A} \supseteq]-\infty,0]$. Or, $]-\infty,0]$ est un fermé contenant A, donc $\bar{A} \subseteq]-\infty,0]$ et on a finalement l'égalité $\bar{A} =]-\infty,0]$. \square

Exercice 3. Pour tout $n \in \mathbb{N}^*$, on note $A_n =]-2 + \frac{1}{n}, 2 - \frac{1}{n}[$.

- 1. Soit $n \in \mathbb{N}^*$, l'ensemble A_n est-il ouvert ? fermé ? Justifier votre réponse.
- 2. Déterminer l'ensemble $A = \bigcup_{n \in \mathbb{N}^*} A_n$. Est-il ouvert? fermé? Justifier votre réponse.
- 3. Déterminer l'ensemble $B = \bigcap_{n \in \mathbb{N}^*} A_n$. Est-il ouvert? fermé? Justifier votre réponse.

Solution. 1. L'ensemble A_n est ouvert mais pas fermé (voir le cours pour une démonstration).

- 2. Comme chacun des A_n est ouvert, leur réunion A est ouvert (théorème du cours). On ne sait en revanche pas a priori si A est fermé ou pas. Pour le savoir, il faut déterminer l'ensemble A. Démontrons que A =]-2,2[.
 - D'une part, on a que chaque A_n est contenu dans]-2,2[, donc $A \subseteq]-2,2[$.
 - D'autre part, soit $x \in]-2,2[$. Comme $\lim -2 + 1/n = -2$ et $\lim 2 1/n = 2$, il existe $\frac{2}{n}$ un rang N à partir duquel, si $n \ge N$, alors -2 + 1/n < x < 2 1/n. En particulier, on a $x \in A_N$ et donc $x \in A$.

On en déduit que A =]-2,2[, qui n'est pas fermé (cf. cours) mais qui est effectivement ouvert.

3. La suite (A_n) est croissante, c'est-à-dire que pour tout $n \in \mathbb{N}^*$, on a $A_n \subseteq A_{n+1}$. On en déduit que leur intersection B est égale à A_1 , c'est-à-dire B =]-1,1[. Cet ensemble est ouvert mais n'est pas fermé.

2. On peut exprimer N explicitement à l'aide de la fonction « partie entière ».

Downloaded from https://idrissi.eu

Épreuve de contrôle continu n°1

Sujet B

Mardi 6 février 2024

Durée: 45 minutes

- Documents, calculettes et échanges par moyens électroniques sont strictement prohibés.
- Une attention particulière sera portée à la rigueur du raisonnement et à la qualité de la rédaction.

Exercice 1. (Question de cours) Soit A un sous-ensemble de \mathbb{R} . Rappeler la définition de « $x \in \mathbb{R}$ adhérent à A ». On note B l'ensemble des points adhérents à A. Montrer que tout fermé F contenant A contient également B.

Solution. On rappelle que *x* est adhérent à A si :

$$\forall r > 0, B(x, r) \cap A \neq \emptyset.$$

Soit A, B, F comme dans l'énoncé. Étant donné $x \in B$, on veut démontrer que $x \in F$. Supposons le contraire, c'est-à-dire que $x \notin F$, ou encore $x \in \mathbb{R} \setminus F$. Comme F est fermé, $\mathbb{R} \setminus F$ est ouvert, donc c'est un voisinage de son élément x. Il existe donc r > 0 tel que $B(x, r) \subseteq \mathbb{R} \setminus F$, ou encore $B(x, r) \cap F = \emptyset$. En particulier, comme $A \subseteq F$, on a que $B(x, r) \cap A \subseteq B(x, r) \cap F = \emptyset$. Cela contredit la définition de x adhérent à A, c'est absurde. Donc on a bien $x \in F$.

Exercice 2. Pour chacune des parties A de \mathbb{R} suivantes, déterminer **en le justifiant** si A est ouverte, fermée et en calculer l'adhérence, l'intérieur et la frontière, lorsque A vaut :

a)
$$\mathbb{Z}$$
 b) $\left\{1 - \frac{1}{n}, n \in \mathbb{N}^*\right\} \cup \left\{1\right\}$ c) $] - 4, 6]$ d) $\mathbb{R} \setminus \mathbb{Q}$.

Solution. a) L'ensemble \mathbb{Z} n'est pas ouvert car il n'existe pas de boule ouverte centrée en un point de \mathbb{N} qui soit incluse dans \mathbb{N} . En effet, si $n \in \mathbb{Z}$ et r > 0, alors B(n,r) est un intervalle non vide et non réduit à un singleton, donc il contient au moins un irrationnel (et a fortiori un nombre qui n'est pas un entier naturel). On en déduit en particulier que \mathbb{Z} n'est un voisinage d'aucun de ses points et que $\mathbb{Z} = \emptyset$. En revanche, \mathbb{N} est fermé, car on peut écrire son complémentaire comme une réunion d'intervalles ouverts :

$$\mathbb{R} \setminus \mathbb{Z} = \bigcup_{n \in \mathbb{Z}}]n, n+1[.$$

On en déduit que $\bar{\mathbb{Z}} = \mathbb{Z}$, et enfin que $\partial \mathbb{Z} = \mathbb{Z}$.

b) Comme $A \subseteq \mathbb{Q}$, par le même raisonnement qu'à la question précédente, A n'est pas ouvert et $\mathring{A} = \emptyset$. Il est en revanche fermé, car on peut écrire son complémentaire comme une réunion d'intervalles ouverts :

$$\mathbb{R} \setminus \mathbf{A} =]-\infty, 0[\cup]1, +\infty[\cup \bigcup_{n \in \mathbb{N}}]1 - \frac{1}{n+1}, 1 - \frac{1}{n}[.$$

On a donc $\bar{A} = A = \partial A$.

^{1.} On peut aussi démontrer que $\mathring{\mathbb{Z}} = \emptyset$ en notant que c'est un ouvert contenu dans \mathbb{Q} , et qu'on a démontré en cours que $\mathring{\mathbb{Q}} = \emptyset$.

c) L'ensemble A n'est ni ouvert, ni fermé. En effet, A n'est pas un voisinage de 6, car toute boule de la forme B(6, r) (avec r > 0) contient un réel x > 6, par exemple x = 6 + r/2. De plus, $\mathbb{R} \setminus A =]-\infty, -4] \cup]6, +\infty[$ n'est pas un voisinage de -4, car toute boule de la forme B(-4, r) (avec r > 0) contient un réel $x \in A$, par exemple $x = -4 + \min(r, 1)/2$.

Les raisonnements précédents démontrent que $6 \notin \mathring{A}$ et $-4 \in \overline{A}$. On en déduit que :

- On a $\mathring{A} \subseteq]-4,6[$. Or, \mathring{A} est le plus grand ouvert contenu dans A, et]-4,6[est un ouvert contenu dans A, donc $\mathring{A} =]-4,6[$.
- On a $\bar{A} \supseteq [-4,6]$. Or, \bar{A} est le plus petit fermé contenant A, et [-4,6] est un fermé contenant A, donc $\bar{A} = [-4,6]$.

Enfin, on trouve que $\partial A = [-4, 6] \setminus]-4, 6[= \{-4, 6\}.$

d) Par le même raisonnement qu'aux deux premières questions, A n'est pas ouvert (car toute boule ouverte contient un nombre rationnel) et $\mathring{A} = \emptyset$.

De plus, A n'est pas fermé. En effet, tous les réels sont adhérents à A, y compris les rationnels. En effet, étant donné $x \in \mathbb{R}$, et $n \in \mathbb{N}$, soit u_n l'approximation décimale à 10^{-n} près de $x - \sqrt{2}$. Alors $(u_n + \sqrt{2})$ est à valeurs dans A et $\lim (u_n - \sqrt{2}) = x$ qui est donc un point adhérent à A. On en déduit que $\bar{A} = \mathbb{R}$ et que $\partial A = \mathbb{R}$.

Exercice 3. Pour tout $n \in \mathbb{N}^*$, on note $A_n = [-1 - \frac{1}{n}, 1 + \frac{1}{n}]$.

- 1. Soit $n \in \mathbb{N}^*$, l'ensemble A_n est-il ouvert ? fermé ? Justifier votre réponse.
- 2. Déterminer l'ensemble $A = \bigcup_{n \in \mathbb{N}^*} A_n$. Est-il ouvert? fermé? Justifier votre réponse.
- 3. Déterminer l'ensemble B = $\bigcap_{n \in \mathbb{N}^*} A_n$. Est-il ouvert? fermé? Justifier votre réponse.

Solution. 1. L'ensemble A_n est fermé mais pas ouvert (voir le cours pour une démonstration).

- 2. La suite (A_n) est décroissante, c'est-à-dire que pour tout $n \in \mathbb{N}^*$, on a $A_n \supseteq A_{n+1}$. On en déduit que leur union A est égale à A_1 , c'est-à-dire A = [-2, 2]. Cet ensemble est fermé mais n'est pas ouvert.
- 3. Comme chacun des A_n est fermé, leur intersection B est fermée (théorème du cours). On ne sait en revanche pas a priori si B est ouvert ou pas. Pour le savoir, il faut déterminer l'ensemble B. Démontrons que A = [-1, 1].
 - D'une part, on a que chaque A_n contient [-1,1], donc B ⊇ [-1,1].
 - D'autre part, soit $x \in B$. Pour tout $n \ge 1$, on a

$$-1 - \frac{1}{n} \le x \le 1 + \frac{1}{n}.$$

En passant à la limite quand n tend vers l'infini, on obtient $-1 \le x \le 1$. Donc $B \subseteq [-1,1]$.

On en déduit que B = [-1, 1], qui n'est pas ouvert (cf. cours) mais qui est effectivement fermé.