

TD3: Fonctions continues et compacité

1 Fonctions continues

Exercice 1. En utilisant la définition de la continuité :

(a) prouver la continuité de la fonction f au point a, pour

$$f(x) = x^2$$
, en $a = 2$; $f(x) = \sqrt{x}$, en $a = 4$; $f(x) = \frac{1}{x}$, en $a = 3$;

- (b) prouver que la fonction f n'est pas continue en 0, pour
 - i. f(x) = E(x) (partie entière de x).
 - ii. La fonction définie sur [0,1] par f(0)=0 et $f(x)=\sin(1/x)$ pour x>0.
 - iii. La fonction définie sur [0,1] par f(0)=0 et f(x)=1/x pour x>0.

Exercice 2. Soit V un ouvert de \mathbb{R} . Soient $f,g:V\to\mathbb{R}$ deux fonctions continues.

- (a) Démontrer que la fonction |f| est continue.
- (b) Démontrer que les fonctions $\min(f,g)$ et $\max(f,g)$, définies par

$$\min(f, g)(x) := \min(f(x), g(x))$$

et

$$\max(f,g)(x) := \max(f(x),g(x))$$

pour tout $x \in \mathbb{R}$, sont continues.

Exercice 3. Soit V un ouvert de \mathbb{R} et soit $f: V \to \mathbb{R}$ une fonction continue. Soit $x_0 \in V$ tel que $f(x_0) \neq 0$. Démontrer qu'il existe un voisinage ouvert U de x_0 , contenu dans V, tel que pour tout $x \in U$ on a

Exercice 4. L'exercice 4 de la feuille 2 montre que la fonction $\sin : \mathbb{R} \to \mathbb{R}$ est continue. Démontrer que les fonctions suivantes sont continues:

(a)
$$\cos : \mathbb{R} \to \mathbb{R}$$

(c)
$$x \mapsto x^n$$
 (où $n \in \mathbb{N}^*$)

(e)
$$x \mapsto x \cos(\sqrt{1+x^2})$$

(a)
$$\cos : \mathbb{R} \to \mathbb{R};$$
 (c) $x \mapsto x^n$ (où $n \in \mathbb{N}^*$); (e) $x \mapsto x \cos(\sqrt{1+x^2});$ (b) $\tan : \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R};$ (d) $\mathbb{R}_+ \to \mathbb{R}, x \mapsto \sqrt{x};$ (f) $x \mapsto \sin(\pi(x - E(x))).$

(d)
$$\mathbb{R}_+ \to \mathbb{R}, x \mapsto \sqrt{x}$$
;

(f)
$$x \mapsto \sin(\pi(x - E(x)))$$
.

Exercice 5. Les fonctions qui suivent sont-elles continues?

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x \sin\left(\frac{1}{x}\right)$ si $x \neq 0$ et $f(x) = 0$ si $x = 0$.

(b)
$$g: \mathbb{R} \to \mathbb{R}$$
, $g(x) = 1$ si $x \in \frac{\pi}{2} + \pi \mathbb{Z}$ et $g(x) = \frac{\cos(3x)}{\cos(x)}$ si $x \notin \frac{\pi}{2} + \pi \mathbb{Z}$

(c)
$$h: \mathbb{R} \to \mathbb{R}$$
, $h(x) = \frac{\tan(x)}{x}$ si $0 < |x| \le \frac{\pi}{4}$, $h(0) = 1$ et $h(x) = 1/x$ si $|x| > \frac{\pi}{4}$.

(d)
$$k : \mathbb{R} \to \mathbb{R}$$
, $k(x) = \arcsin(x - E(x))$.

Exercice 6. (a) Supposons que $f, g: \mathbb{R} \to \mathbb{R}$ sont deux fonctions continues tels que f(x) = g(x) pour tout $x \in \mathbb{Q}$. Démontrer que f(x) = g(x) pour tout $x \in \mathbb{R}$.

(b) Soit $f: \mathbb{R} \to \mathbb{R}$ une function continue tel que f(x+y) = f(x) + f(y) pour tout $(x,y) \in \mathbb{R}^2$. Démontrer qu'il existe $\alpha \in \mathbb{R}$ tel que $f(x) = \alpha x$ pour tout $x \in \mathbb{R}$.

Exercice 7. Soit I = [a, b] un intervalle fermé (où a et b sont des réels tels que a < b) et soit $f: I \to I$ une fonction continue. Démontrer que f admet un point fixe (i.e., il existe $x \in [a, b]$ tel que f(x) = x).

2 Compacité

Exercice 8. Parmi les ensembles suivants, déterminer lesquels sont compacts et, en cas de non-compacité, exhiber une suite dont aucune sous-suite n'est convergente dans l'ensemble en question.

(a)
$$A = [1, 3]$$

- (b) $B = [1, +\infty[$
- (c) C = [-1, 1]
- (d) $D = \{x \in \mathbb{R} \mid x^2 3x + 2 \le 0\}$
- (e) $E = \{ y \in \mathbb{R} \mid \exists x \in [2, 3[, y = x^2 3x + 2] \}$
- (f) $F = \{ y \in \mathbb{R} \mid \exists x \in [-2, 3[, y = x^2 3x + 2] \}$
- (g) $G = \{x \in \mathbb{R} \mid 0 \le \cos x \le 1\}.$
- (h) $H = \{1/n \mid n \in \mathbb{N}^*\} \cup \{0\}$

Exercice 9. Étudier la compacité des ensembles

- (a) $A = \left\{ y \in \mathbb{R} \mid \exists x \in [-3, 3], \ y = e^x e^{x^3} + \frac{x^2 + 1}{x^4 + 1} \right\}$
- (b) $B = \{x \in \mathbb{R} \mid -3 \le 4e^x \le 3\}$
- (c) $C = \{x \in \mathbb{R} \mid -0,5356 < \cos x < 0,7654\}$

Exercice 10. Soit $(x_n)_{n\in\mathbb{N}}$ une suite réelle à valeurs dans un compact $K\subset\mathbb{R}$. Démontrer que la suite $(x_n)_{n\in\mathbb{N}}$ est convergente si et seulement si elle admet une unique valeur d'adhérence.

3 Compléments

Exercice 11. (a) Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) := \begin{cases} 1, & \text{si } x \in \mathbb{Q} \\ 0, & \text{si } x \notin \mathbb{Q}. \end{cases}$$

Démontrer que f n'est continue en aucun point.

- (b) Soit $g: \mathbb{R} \to \mathbb{R}$ la fonction $x \mapsto xf(x)$. Soit $x_0 \in \mathbb{R}$. Démontrer que g est continue en x_0 si et seulement si $x_0 = 0$.
- (c) Soit A un ensemble fini. Trouver une fonction $h: \mathbb{R} \to \mathbb{R}$ tel que A soit l'ensemble de points de continuité de h.

Exercice 12. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue. Supposons que pour tout $x, y \in \mathbb{Q}$ avec x < y on a f(x) < f(y). Démontrer que f est strictement croissante.

Exercice 13. On revient à l'exercice 11 de la feuille 1 où l'on s'intéressait, pour deux ensembles non vides A et B de \mathbb{R} , à l'ensemble

$$A + B = \{a + b \mid a \in A \text{ et } b \in B\}.$$

Démontrer que si $A \subset \mathbb{R}$ est compact et $B \subset \mathbb{R}$ est fermé, alors A + B est fermé.

Exercice 14. (a) Soit $(x_n)_{n\in\mathbb{N}}$ une suite réelle convergeant vers une limite $l\in\mathbb{R}$. Démontrer que l'ensemble $\{x_n\mid n\in\mathbb{N}\}\cup\{l\}$ est compact.

(b) Soit $f: \mathbb{R} \to \mathbb{R}$ une application continue telle que pour tout compact $K \subset \mathbb{R}$, $f^{-1}(K)$ est compact. Démontrer que l'image de tout fermé par f est fermée (i.e. pour tout $F \subset \mathbb{R}$ fermé, f(F) est fermé).

Exercice 15. Dans les cas suivants, démontrer que la fonction f est uniformément continue sur l'intervalle J:

(a) f(x) = kx, $J = \mathbb{R}$;

(d) $f(x) = \sqrt{x}, J = [0, +\infty[$;

- (b) $f(x) = x^2$, J = [0, 4];
- (c) f(x) = 1/x, $J = [1/10, +\infty[$;
- (e) $f(x) = \sin(x), J = \mathbb{R}$.

Exercice 16. Résoudre dans \mathbb{R}^+ le système

$$\begin{cases} x^2 - y^2 &= 1\\ x - y &= \delta \end{cases}$$

avec $\delta > 0$. En déduire que la fonction $f(x) = x^2$ n'est pas uniformément continue sur l'intervalle $[0, +\infty]$.