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i Important

Question

Theorem

(A Definition

> Conjecture
Configuration spaces

Definition and applications

-y

= QOrdered configuration space of r points in M: Confy, (1) := {(xl, ...,xr) eEM” | Vi#j,x # X }
= Applications: Braid groups; Loop spaces; Splitting of Map_; Embedding calculus; Gelfand-Fuks cohomology; Path planning

Homotopy invariance
A= Homotopy, R =~ {0}
¢»w Conjecture: X = Y = Confy(r) = Confy (), counterexamples are easy to find
= Restrictions to manifolds:
O ObviousifdimM < 2
0 Bodigheimer-Cohen-Taylor, Bendersky-Gitler: invariance of homology
O Levitt: invariance of QConfy,
o Aouina-Klein: invariance of Z*Confy,
= Counterexample due to Longoni-Salvatore: L; ; vs L7,
= Conjecture remains for simply connected spaces

Rational homotopy theory
Homotopy groups: m,(X), Whitehead theorem
A= Definition of rational equivalence for simply connected spaces
o Can be generalized to nilpotent spaces of finite type
»= Conjecture ® Q:if M =g N then Confy, (1) =~q Confy(r)
#r = General conjecture does not imply rational conjecture
= Sullivan models
Ao Definitions of CDGAs & quasi-isomorphisms
0 Examples: H*(M), A = A°, Q;r (M)
(Ao Piecewise linear forms
o Ap = S(to, ., tn, dbg, ..., dty) /(Tt; = 1, ¥dt; = 0)
o Differential §(t;) = dt;, §(dt;) =0
o Cofaces, codegeneracies:

t, k<i te k<i
ool(tg)=4 0 k=i, 9(t)=Ltettesr k=i
tp—1 k>i st k>i

Finally, Q, (X) := € Ak
o Finally, 0, (X) {(wf 5, s

di(wf) = Wpogis sj(wf) = (.l)foo.j}
<0 Theorem Qpp(X) = C*(X; Q)
<0 Theorem equivalence between Top [WQTl] and CDGAq [qiso'l].
[4o Sullivan model of X = any CDGA quasi-iso to Q5 (X): knows everything about the rational homotopy type of X

O There is a version of all that over the real numbers
¢™»w Refined conjecture: can find a model of Confy, (r) from a model of M
Formality of Confyn (1)
- = Theorem (Arnold)

H*(ConfRn(r)) = S(wij)
1<i#j<r
O wy; is dual to two points rotating one around the other
Confgn(2) = S™ ! and w;; is the fundamental class, first two relations follow easily

]
o Third relation: Jacobi-type
O Proof using the method of solar systems

2 _ — n —
/(“’U = 0, (A)ﬁ = (—1) wij,wijwjk + wjkwki + (L)ki(l)i]' = 0)
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O Interpretation using graphs

(A= Aspace X is formal if H*(X; Q) is a Sullivan model of X

= Examples and counterexamples
Spheres
Lie groups, H-spaces
Spaces of dimension < 4p — 2 such that m.,, = 0
Compact Kadhler manifolds (w = Jh is closed for some Hermitian metric)
o If Sis a surface of genus 2, then Confg(2) is not formal (even though S is formal)

O ooao

~ = Theorem (Arnold) Conf¢ () is formal for all . Proof: w;; dlog(zi - Z]-).
- = Theorem (Kontsevich) Confgn (r) is formal foralln > 2 and all r.
Lambrechts—StanIey model

Model definition
<~ ® Theorem (Lambrechts-Stanley) Any manifold any a Poincaré duality model: CDGA (4, d) equipped with €: A™ > Rsteod =
OandAV[-n] = A
7= Diagonalclass:Ay € A® AsuchthatVa € 4,a = (e ® 1)(AA (a® 1)).
Z= Candidate model of Confy, (r) G, (1) = (A®T Q H*(ConfRn(r))/(aiwij = ajo)ij),dwij = Aij).
= |nterpretation in terms of graphs with decorations.
= Small examples: r € {0, 1, 2}
= History of this model:
o Cohen-Taylor E2 = G+ (r) = H*(Confy (r))
Kriz, Totaro: when M is a smooth projective complex manifold (implies compact Kahler)
Lambrechts-Stanley: case r = 2 and tc,M =0
Cordova Bulens: case r = 2, m<;M = 0, dim M even
Bendersky-Gitler: dual spectral sequence (Félix-Thomas, Berceanu-Markl-Papadima)
o Lambrechts-Stanley: H*(G,(r)) = H*(Confy (r)) if tg;M = 0 as S,-modules
~-® Theorem Always a model if M is smooth, simply connected, dimension > 4.
= Sketch of proof:
O Resolve G, (r) using graph complexes

Oo0oo0oao

Combinatorics: Graphs, (1) = G4 (1)
Compactify configuration spaces to compute integrals
The bundles aren't submersions: we must use PA forms
Some integrals vanish thanks todimM =>4 A myM =0
Gu(r) = Gg(r)ifA=B
Fulton-MacPherson compactification

= Compactification of Confgn (U) for a finite set U

Oo00o0ooao

6;j: Confgn(U) - S™°1 8iji: Confrn (U) — [0, +0]
X; — X;
R % P k. 1 [l =]
< - A

2w FM,(U) is the closure of the image in (S”‘l)r(r_l) x [0, 400]""=D=2) (where r = #U)
~- = This is a smooth manifold with corners of dimensionnr —n — 1 (or 0 if r < 1).
= Boundaries
o Given W c U, 8y, FM,,(U) is isomorphic to FM,, (U/W) x FM,,(W).
<0 0FM,(U) = Uycy sw=2 OwFM, (U), each part is of codimension 1, intersection of codim = 2
(Ao Fiberwise boundary m: E — B, dim 7 = k: m%: U,ep dn 1 ({x}) — B, bundle, dimm® = r — 1.
~ 0 Fiberwise boundary of m: FM,,(U) — FM,,(4) is given by

M@= |]  awmw
HW=2
#WnNU<i1vUcw

Semi-algebraic sets and PA forms
= Problem: FM,,(A U I) - FM,,(A) is not a submersion in general
/= Solution: they are semi-algebraic fiber bundles!
A= Semi-algebraic (SA) set: union of intersection of solution sets of polynomial inequalities
2= SAbundle: T: E > B + cover {U,} of B + SA homeos U, x F = n~(U,) compatible with =
2= SAchains: C3A(X) := { f.[M] | M: compact SA variety, f: M — X SAmap }.
= For w a differential form on RY with support on X, we let (f* M1, a)) =) fsif*a), where M = U; S; is a suitable
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stratification.
[£= Minimal forms: for f, g;: X = R, let A(f; gy, ., gk ) € Ui, (X) defined by

(A(f3 g1 9i)¥) = <(f. G s Gk), Vo X dxy A e A dxk>

Zm PAforms: formal integrals along boundaries T, A € ng];‘_d)(X) where 1 € Q’r;m(E) andm: E —» X of rank d

= More generally, for ®: X — C;(Y) strongly continuous, can define <f¢/1,y> = (A, P xvy).

= Necessary: e.g. % € Q1. ([0,1]) but only the boundary of logt = (projz)* (Xt2<t1 dtz) € Q3,([0,1])
= Most important property: Stokes formula d(‘r[*l) =T,.(dA) + nf(KEa)
*® Theorem [HLTV] Qpa(X) = C*(X; R) for a compact SA set X
= FMy(r) and FM,,(r) are compact SA sets, projections are SA fiber bundles.
Graph complexes
= No hope of finding G4 () 5 Q*(ConfM(r)) in general
= Standard technique: resolve G4 (1), i.e., turn relations into a differential
= Alsoresolve Ast. A —R — Q*(M)
. ooizj = 0 and wj; = Tw;; are easy to resolve: remove some generators
= For the others, use graph complexes: add internal vertices, d = dg + dgpjit + deontr

= Combinatorics: G4 - Graphsg (1) using filtrations (#E — #V), spectral sequences, induction on r.

= Corresponds to fiber integrals: w(T) = fFMM(UuI)aFMM(U) Auevu % A Neeg de

= Where ¢ € .(ZgA_l(FMM(Z)) is the "propagator": d¢p = Ay
= Problem: could get extra terms in the differential from "partition function" Z: GC, = R, incomputable integrals
= Not the case thanks to degree counting! Several simplifications (unary internal, bivalent internal...)
= Get Graphsg(r) 5 Qpa (ConfM (r)), quasi-iso thanks to the first result
Jr = Indimension < 3, different arguments: obvious in dim < 2, need Poincaré conjecture for dim 3
Operads
Motivation: Factorization homology
jr = Goal: produce invariants of manifolds that are finer than homotopy invariants
o For example, distinguish L; ; and Ly ;
O Motivation from physics: "charged" particles in the manifold

O More precisely, given space of decorations A, particles are decorated by elements of A that get multiplied when they
collide

a b
«——2n
ab Mo

(::i::::j:::::::> : <::i::::i:::::::>’\a . \»

b a

e e
a y 7
IIQ v Q

~

= What kind of multiplication do we want?
o If we take A commutative+associative, everything works.
O The result is known: higher Hochschild homology...
O But this is a homotopy invariant!
o We need to have different multiplications when points collide in different ways
O Fulton-MacPherson compactification is the answer!
Introduction to operads
= Qperads are designed to encode "categories of algebras"
O Associative algebras
o Commutative algebras
O Lie algebras

ba
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o ..
77 = (Analogy) group/monoid : representation :: operad : algebra
0 Operads are basically monoids, but operations are multivariable
o Prototypical monoid: End(X) for some object X
o Analogue: endomorphism operad Endy = {Hom(X®", X)}
o Canrenumber inputs of operations (symmetric)
o Can compose operations: o;: Hom(X®7, X) x Hom(X®%,X) » Hom(X®7*+5-1 X)

i it -1

NNy
| | |

O Thereis an identity: idy € Hom(X, X)
L2 = Anoperadis a collection of abstract "operations" P = {P (1)}, plus:
O Renumbering
Composition
Identity for the composition
Associativity of composition
Equivariance of composition
o Draw pictures of trees to understand what it's all about!
(5= Algebra = object 4 equipped with P(r) ® A®" — A satisfying several conditions
o Draw trees again!
= Examples of operads and their algebras
o As(r) = &, algebras = monoids
o Com(r) = {*,}, algebras = commutative monoids
= Why do all that...?
0 Operads in other categories: algebra, topology, geometry...
o General framework to encode "algebraic structures"
Operadic structure of FM,, and FM,,
<= Theorem: there is an operad structure on FM,,
Structure maps: FM,,(r) X FM,,(s) —» FM,,(r + s — 1) "insert" infinitesimally small configurations of points
Given by insertion of boundary facets dy,FM,,(4)
= Forn = 1: FM, () is r! copies of several polytopes known as associahedra
" Forn=2:
r = 0: FM,(0) = {x}is a unit
r = 1: FM,(1) = {id} is the identity
r = 2: FM,(2) = §: all the ways of multiplying two elements in 2d
r = 3: contains homotopies between all the ways of multiplying three elements

O o0 o0oao

Oooao
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- = Thereis a right action of FM,, on FM,, if M is parallelized
Insert of configurations into the tangent space
Given by insert of boundary facets too

L& = Factorization homology: for a parallelized manifold M and an FM,,-algebra B,

jB = |_| FMy (r) x A" / ((x °i Y)(bl' ---'br+s—1) ~ x(bl' b;— lty(bu o Dy 1) bi sy, .. 'ar+s—1))
M r=0
Connectlon with algebraic models
= The operad FM,, is formal as an operad
- = The LS model G4 is compatible with the operad action
= Consequence: can compute factorization homology using G4
= Example: B = S(g[1 —n]) then fMB = C*CE(Q"_*(M; g)).
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