Configurations spaces, algebraic topology and operads

Najib Idrissi - Université Paris Cité - https://idrissi.eu/class/23-cimpa Lecture given at the CIMPA school "Crossroads of geometry, representation theory and higher structures"

Symbols

★ Important

Question

Theorem

Conjecture

Configuration spaces

Definition and applications

- Ordered configuration space of r points in M: $Conf_M(r) := \{(x_1, ..., x_r) \in M^r \mid \forall i \neq j, x_i \neq x_i \}$.
- Applications: Braid groups; Loop spaces; Splitting of Map.; Embedding calculus; Gelfand-Fuks cohomology; Path planning

Homotopy invariance

- Homotopy, $\mathbb{R} \simeq \{0\}$
- \bigcirc Conjecture: $X \simeq Y \Rightarrow \operatorname{Conf}_X(r) \simeq \operatorname{Conf}_Y(r)$, counterexamples are easy to find
 - Restrictions to manifolds:
 - □ Obvious if dim $M \le 2$
 - □ Bödigheimer-Cohen-Taylor, Bendersky-Gitler: invariance of homology
 - \Box Levitt: invariance of $\Omega Conf_M$
 - \Box Aouina-Klein: invariance of $\Sigma^{\infty}Conf_{M}$
 - Counterexample due to Longoni-Salvatore: L_{7.1} vs L_{7.2}
 - Conjecture remains for simply connected spaces

Rational homotopy theory

Homotopy groups: $\pi_*(X)$, Whitehead theorem

- Definition of rational equivalence for simply connected spaces
 - □ Can be generalized to nilpotent spaces of finite type
- \bigcirc Conjecture $\bigotimes \mathbb{Q}$: if $M \simeq_{\mathbb{Q}} N$ then $Conf_M(r) \simeq_{\mathbb{Q}} Conf_N(r)$
- General conjecture does not imply rational conjecture
 - Sullivan models
 - Definitions of CDGAs & quasi-isomorphisms
 - \Box Examples: $H^*(M)$, $A = A^0$, $\Omega_{dR}^*(M)$
 - □ Piecewise linear forms
 - $\square \quad \mathcal{A}_{\mathbf{n}} \coloneqq S(t_0, \dots, t_n, dt_0, \dots, dt_n) / (\sum t_i = 1, \sum dt_i = 0)$
 - \Box Differential $\delta(t_i) = dt_i$, $\delta(dt_i) = 0$
 - □ Cofaces, codegeneracies:

$$\Box \quad \sigma^{i}(t_{k}) = \begin{cases} t_{k} & k < i \\ 0 & k = i \\ t_{k-1} & k > i \end{cases} \quad \partial^{j}(t_{k}) = \begin{cases} t_{k} & k < i \\ t_{k} + t_{k+1} & k = i \\ t_{k+1} & k > i \end{cases}$$

$$\Box \quad \text{Finally, } \Omega^{k}_{PL}(X) \coloneqq \left\{ \left(\omega_{f} \in \mathcal{A}^{k}_{n} \right)_{f:\Delta^{n} \to X} \middle| d_{i}(\omega_{f}) = \omega_{f \circ \partial^{i}}, \ s_{j}(\omega_{f}) = \omega_{f \circ \sigma^{j}} \right\}$$

$$\qquad \text{Finally, } \Omega^k_{PL}(X) \coloneqq \left\{ \left(\omega_f \in \mathcal{A}^k_n \right)_{f: \Delta^n \to X} \middle| \ d_i \Big(\omega_f \Big) = \omega_{f \circ \partial^i}, \ s_j \Big(\omega_f \Big) = \omega_{f \circ \sigma^j} \right\}$$

- $\oint \Box$ Theorem $\Omega_{\mathrm{PL}}^*(X) \simeq C^*(X; \mathbb{Q})$
- \oint Theorem equivalence between Top $|\mathcal{W}_{\mathbb{Q}}^{-1}|$ and $CDGA_{\mathbb{Q}}[qiso^{-1}]$.
- \square Sullivan model of X = any CDGA quasi-iso to $\Omega_{PL}^*(X)$: knows everything about the rational homotopy type of X
 - ☐ There is a version of all that over the real numbers
- \bigcirc Refined conjecture: can find a model of $Conf_M(r)$ from a model of M

Formality of $Conf_{\mathbb{R}^n}(r)$

Theorem (Arnold)

$$H^*\left(\mathsf{Conf}_{\mathbb{R}^n}(r)\right) = S\left(\omega_{ij}\right)_{1 \le i \ne i \le r} / \left(\omega_{ij}^2 = 0, \omega_{ji} = (-1)^n \omega_{ij}, \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0\right)$$

- \square ω_{ii} is dual to two points rotating one around the other
- ☐ Third relation: Jacobi-type
- Proof using the method of solar systems

□ Interpretation using graphs \blacksquare A space X is formal if $H^*(X; \mathbb{Q})$ is a Sullivan model of X Examples and counterexamples □ Spheres ☐ Lie groups, H-spaces

- □ Spaces of dimension $\leq 4p-2$ such that $\pi_{\leq n}=0$
- \Box Compact Kähler manifolds ($\omega = \Im h$ is closed for some Hermitian metric)
- \Box If S is a surface of genus 2, then $Conf_S(2)$ is not formal (even though S is formal)
- f Theorem (Arnold) $\operatorname{Conf}_{\mathbb{C}}(r)$ is formal for all r. Proof: $\omega_{ij} \mapsto d \log(z_i z_j)$.
- f Theorem (Kontsevich) $\operatorname{Conf}_{\mathbb{R}^n}(r)$ is formal for all $n \geq 2$ and all r.

Lambrechts-Stanley model

Model definition

- \oint Theorem (Lambrechts-Stanley) Any manifold any a Poincaré duality model: CDGA (A,d) equipped with $\epsilon:A^n\to\mathbb{R}$ st $\epsilon\circ d=$ $0 \text{ and } A^{\vee}[-n] \cong A.$
- Diagonal class: $\Delta_A \in A \otimes A$ such that $\forall a \in A, a = (\epsilon \otimes 1)(\Delta_A \cdot (a \otimes 1))$.
- Candidate model of $\operatorname{Conf}_M(r)$ $G_A(r) \coloneqq \left(A^{\otimes r} \otimes H^*(\operatorname{Conf}_{\mathbb{R}^n}(r)) / (a_i \omega_{ij} = a_i \omega_{ij}), d\omega_{ij} = \Delta_{ij}\right)$.
 - Interpretation in terms of graphs with decorations.
 - Small examples: $r \in \{0, 1, 2\}$
 - History of this model:
 - \Box Cohen-Taylor $E^2 = G_{H^*(M)}(r) \Rightarrow H^*(Conf_M(r))$
 - \Box Kriz, Totaro: when M is a smooth projective complex manifold (implies compact Kähler)
 - $\ \square$ Lambrechts-Stanley: case r=2 and $\pi_{\leq 2}M=0$
 - □ Cordova Bulens: case r = 2, $\pi_{\leq 1} M = 0$, dim M even
 - □ Bendersky-Gitler: dual spectral sequence (Félix-Thomas, Berceanu-Markl-Papadima)
 - \square Lambrechts-Stanley: $H^*(G_A(r)) = H^*(Conf_M(r))$ if $\pi_{\leq 1}M = 0$ as \mathfrak{S}_r -modules
- \oint Theorem Always a model if M is smooth, simply connected, dimension ≥ 4 .
 - Sketch of proof:
 - \Box Resolve $G_A(r)$ using graph complexes
 - \Box Combinatorics: Graphs_A $(r) \rightarrow G_A(r)$
 - Compactify configuration spaces to compute integrals
 - ☐ The bundles aren't submersions: we must use PA forms
 - \square Some integrals vanish thanks to dim $M \ge 4 \land \pi_1 M = 0$
 - $\Box G_A(r) \simeq G_B(r) \text{ if } A \simeq B$

Fulton-MacPherson compactification

• Compactification of $Conf_{\mathbb{R}^n}(U)$ for a finite set U

$$\theta_{ij} \colon \operatorname{Conf}_{\mathbb{R}^n}(U) \to S^{n-1}$$

$$(x_n)_{i=0} \mapsto \frac{x_i - x_j}{\|\cdot\|_{\mathbb{R}^n}}$$

$$\begin{array}{l} \text{actification of } \operatorname{Conf}_{\mathbb{R}^n}(U) \text{ for a finite set } U \\ \operatorname{onf}_{\mathbb{R}^n}(U) \to S^{n-1} & \delta_{ijk} : \operatorname{Conf}_{\mathbb{R}^n}(U) \to [0, +\infty] \\ \left(x_u\right)_{u \in U} \mapsto \frac{x_i - x_j}{\left\|x_i - x_j\right\|} & \left(x_u\right)_{u \in U} \mapsto \frac{\left\|x_i - x_j\right\|}{\left\|x_i - x_k\right\|} \end{aligned}$$

- FM_n(U) is the closure of the image in $(S^{n-1})^{r(r-1)} \times [0, +\infty]^{r(r-1)(r-2)}$ (where r = #U)
- \oint This is a smooth manifold with corners of dimension nr n 1 (or 0 if $r \le 1$).
 - - □ Given $W \subset U$, $\partial_W \text{FM}_n(U)$ is isomorphic to $\text{FM}_n(U/W) \times \text{FM}_n(W)$.
 - $\oint \Box \partial FM_n(U) = \bigcup_{W \subseteq U \#W > 2} \partial_W FM_n(U)$, each part is of codimension 1, intersection of codim ≥ 2
 - Fiberwise boundary $\pi: E \to B$, dim $\pi = k: \pi^{\partial}: \bigcup_{x \in B} \partial \pi^{-1}(\{x\}) \to B$, bundle, dim $\pi^{\partial} = r 1$.
 - $\oint \Box$ Fiberwise boundary of π : $FM_n(U) \to FM_n(A)$ is given by

$$\mathrm{FM}_n^{\partial}(A) \coloneqq \bigcup_{\substack{\#W \ge 2 \\ \#WOUSINGW}} \partial_W \mathrm{FM}_n(U)$$

Semi-algebraic sets and PA forms

- Problem: $FM_M(A \sqcup I) \to FM_M(A)$ is not a submersion in general
- Solution: they are semi-algebraic fiber bundles!
- Semi-algebraic (SA) set: union of intersection of solution sets of polynomial inequalities
- SA bundle: $\pi: E \to B$ + cover $\{U_{\alpha}\}$ of B + SA homeos $U_{\alpha} \times F \cong \pi^{-1}(U_{\alpha})$ compatible with π
- SA chains: $C_*^{SA}(X) := \{f_*[M] \mid M : \text{compact SA variety}, f : M \to X \text{ SA map} \}.$
 - For ω a differential form on \mathbb{R}^N with support on X, we let $\langle f_*[\![M]\!], \omega \rangle \coloneqq \sum_i \int_{S_i} f^* \omega$, where $M = \bigcup_i S_i$ is a suitable

stratification.

- $\text{Minimal forms: for } f,g_i\colon X\to\mathbb{R}, \text{ let } \lambda\big(f;g_1,\ldots,g_k\big)\in\Omega^k_{\min}(X) \text{ defined by } \big\langle \lambda\big(f;g_1,\ldots,g_k\big),\gamma\big\rangle\coloneqq \Big(\big(f,g_1,\ldots,g_k\big)_*\gamma,x_0\,dx_1\wedge\cdots\wedge dx_k\Big)$
- \square PA forms: formal integrals along boundaries $\pi_*\lambda\in\Omega^{(k-d)}_{\mathrm{PA}}(X)$ where $\lambda\in\Omega^k_{\min}(E)$ and $\pi:E\to X$ of rank d
 - More generally, for $\Phi: X \to \mathcal{C}_l(Y)$ strongly continuous, can define $\left\langle \int_{\Phi} \lambda, \gamma \right\rangle \coloneqq \langle \lambda, \Phi \ltimes \gamma \rangle$.
 - $\bullet \quad \text{Necessary: e.g.} \ \frac{dt}{t} \in \Omega^1_{\min}([0,1]) \ \text{but only the boundary of } \log t = \left(\operatorname{proj}_2 \right)_* \left(\chi_{t_2 < t_1} \, dt_2 \right) \in \Omega^0_{\mathrm{PA}}([0,1])$
 - Most important property: Stokes formula $d(\pi_*\lambda) = \pi_*(d\lambda) \pm \pi_*^{\partial}(\lambda_{E^{\partial}})$
- $\oint \bullet$ Theorem [HLTV] $\Omega_{PA}^*(X) \simeq C^*(X; \mathbb{R})$ for a <u>compact</u> SA set X
 - $FM_M(r)$ and $FM_n(r)$ are compact SA sets, projections are SA fiber bundles.

Graph complexes

- No hope of finding $G_A(r) \stackrel{\sim}{\to} \Omega^*(Conf_M(r))$ in general
- Standard technique: resolve $G_A(r)$, i.e., turn relations into a differential
- Also resolve A s.t. $A \leftarrow R \rightarrow \Omega^*(M)$
- $\omega_{ij}^2=0$ and $\omega_{ji}=\pm\omega_{ij}$ are easy to resolve: remove some generators
- For the others, use graph complexes: add internal vertices, $d=d_R+d_{
 m split}+d_{
 m contr}$
- Combinatorics: $G_A \leftarrow \operatorname{Graphs}_R(r)$ using filtrations (#E #V), spectral sequences, induction on r.
- Corresponds to fiber integrals: $\omega(\Gamma) \coloneqq \int_{\mathsf{FM}_M(U \sqcup I) \to \mathsf{FM}_M(U)} \bigwedge_{u \in U \sqcup} \alpha_u \wedge \bigwedge_{e \in E} \varphi_e$
- Where $\phi \in \Omega^{n-1}_{\mathrm{PA}}(\mathrm{FM}_M(2))$ is the "propagator": $d\phi = \Delta_M$
- Problem: could get extra terms in the differential from "partition function" $Z: GC_R \to \mathbb{R}$, incomputable integrals
- Not the case thanks to degree counting! Several simplifications (unary internal, bivalent internal...)
- Get Graphs_R $(r) \xrightarrow{\sim} \Omega_{PA}^* (Conf_M(r))$, quasi-iso thanks to the first result
- ★ In dimension ≤ 3 , different arguments: obvious in dim ≤ 2 , need Poincaré conjecture for dim 3

Operads

Motivation: Factorization homology

- ★ Goal: produce invariants of manifolds that are finer than homotopy invariants
 - \Box For example, distinguish $L_{7.1}$ and $L_{7.2}$
 - ☐ Motivation from physics: "charged" particles in the manifold
 - \Box More precisely, given space of decorations A, particles are decorated by elements of A that get multiplied when they collide

- What kind of multiplication do we want?
 - \Box If we take *A* commutative+associative, everything works.
 - ☐ The result is known: higher Hochschild homology...
 - □ But this is a homotopy invariant!
 - ☐ We need to have different multiplications when points collide in different ways
 - □ Fulton-MacPherson compactification is the answer!

Introduction to operads

- Operads are designed to encode "categories of algebras"
 - □ Associative algebras
 - Commutative algebras
 - □ Lie algebras

□ ...

- (Analogy) group/monoid: representation:: operad: algebra
 - □ Operads are basically monoids, but operations are multivariable
 - $\ \ \square$ Prototypical monoid: End(X) for some object X
 - \square Analogue: endomorphism operad $\operatorname{End}_X = \{\operatorname{Hom}(X^{\otimes r}, X)\}$
 - □ Can renumber inputs of operations (symmetric)
 - □ Can compose operations: \circ_i : Hom $(X^{\otimes r}, X) \times$ Hom $(X^{\otimes s}, X) \rightarrow$ Hom $(X^{\otimes r+s-1}, X)$

- □ There is an identity: $id_X \in Hom(X, X)$
- \square An operad is a collection of abstract "operations" $\mathcal{P} = \{\mathcal{P}(r)\}_{r \geq 0}$ plus:
 - □ Renumbering
 - Composition
 - □ Identity for the composition
 - □ Associativity of composition
 - Equivariance of composition
 - □ Draw pictures of trees to understand what it's all about!
- \square Algebra = object A equipped with $\mathcal{P}(r) \otimes A^{\otimes r} \to A$ satisfying several conditions
 - □ Draw trees again!
 - Examples of operads and their algebras
 - \Box $\mathcal{A}s(r) = \mathfrak{S}_r$, algebras = monoids
 - Why do all that...?
 - □ Operads in other categories: algebra, topology, geometry...
 - ☐ General framework to encode "algebraic structures"

Operadic structure of FM_n and FM_M

 \mathcal{F} Theorem: there is an operad structure on FM_n

Structure maps: $FM_n(r) \times FM_n(s) \to FM_n(r+s-1)$ "insert" infinitesimally small configurations of points Given by insertion of boundary facets $\partial_W FM_n(A)$

- For n = 1: FM₁(r) is r! copies of several polytopes known as associahedra
- For n = 2:
 - r = 0: $FM_2(0) = \{*\}$ is a unit
 - r = 1: $FM_2(1) = \{id\}$ is the identity
 - $\Gamma = 2$: FM₂(2) = S^1 : all the ways of multiplying two elements in 2d
 - r=3: contains homotopies between all the ways of multiplying three elements

There is a right action of FM_n on FM_M if M is parallelized Insert of configurations into the tangent space Given by insert of boundary facets too

 \square Factorization homology: for a parallelized manifold M and an FM_n -algebra B,

$$\int_{M} B = \bigsqcup_{r>0} FM_{M}(r) \times A^{r} / ((x \circ_{i} y)(b_{1}, \dots, b_{r+s-1}) \sim x(b_{1}, \dots, b_{i-1}, y(b_{i}, \dots, b_{i+r-1}), b_{i+r}, \dots, a_{r+s-1}))$$

Connection with algebraic models

- \mathcal{F} The operad FM_n is formal as an operad
- \mathcal{F} The LS model G_A is compatible with the operad action
 - Consequence: can compute factorization homology using G_A
 - Example: B = S(g[1-n]) then $\int_M B = C_*^{CE}(\Omega^{n-*}(M;g))$.

References

- Benoit Fresse. Homotopy of Operads and Grothendieck–Teichmüller Groups. Volume 1: "The Algebraic Theory and its Topological Background." Mathematical Surveys and Monographs 217, AMS (2017). ISBN: 978-1-4704-3481-6. DOI:10.1090/surv/217.1 Note: Parts Ia and Ib are the relevant parts.
- Fresse, Benoit. "Little discs operads, graph complexes and Grothendieck-Teichmüller groups". *Handbook of homotopy theory*, 405–441, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press (2020).
- Najib Idrissi. Real Homotopy of Configuration Spaces: Peccot Lecture, Collège de France, March and May 2020. Lecture Notes in Mathematics 2303. Springer (2023). ISBN: 978-3-031-04427-4. DOI:10.1007/978-3-031-04428-1.
 Note: a preprint of the book is available at https://hal.science/hal-03821309.
- Ben Knudsen. Configuration spaces in algebraic topology. arXiv:1803.11165.
- Jean-Louis Loday and Bruno Vallette. *Algebraic Operads*. Grundlehren der mathematischen Wissenschaften 346. Springer (2012). ISBN: 978-3-642-30361-6. DOI:10.1007/978-3-642-30362-3.