TD2: Théorie des anneaux

M1 MIC – Algèbre

Année 2025–2026

Exercice 1. Décrire le plus petit sous-anneau de $\mathbb C$ contenant $i \in \mathbb C$.

Exercice 2. Soit A un anneau et $I, J \subset A$ des idéaux.

(a) Démontrer que les sous-ensembles suivants sont des idéaux de A:

$$I \cap J$$
, $I + J = \{x + y \mid x \in I, y \in J\}$, $IJ = \{x_1y_1 + \ldots + x_ny_n \mid x_i, y_i \in I\}$.

- (b) Quelles relations d'inclusions existent entre $I, J, I \cap J, I + J$ et IJ?
- (c) Pour $A = \mathbb{Z}$, $I = m\mathbb{Z}$ et $J = n\mathbb{Z}$ (avec $m, n \in \mathbb{Z}$), décrire les idéaux de la question précédente.

Exercice 3. Soit A un anneau et $a \in A$. Démontrer que l'unique morphisme $\mathbb{Z}[X] \to A$ tel que $X \mapsto a$ est donné par $P \mapsto P(a)$.

Exercice 4. Soit A un anneau et $I_1, \ldots, I_n \subset A$ des idéaux non-triviaux tels que si $i \neq j$ alors $I_i + I_j = A$.

- (a) Donner un exemple pour $A = \mathbb{Z}$ et n = 3.
- (b) Démontrer que pour tous $x_1, \ldots, x_n \in A$, il existe $x \in A$ tel que $x \equiv x_i \pmod{I_i}$ pour tout i.
- (c) Démontrer que $A/(I_1 \cap \ldots \cap I_n) \cong (A/I_1) \times \ldots \times (A/I_n)$.

Exercice 5. Soit A un anneau et $I \subset A$ un idéal.

- (a) Démontrer que les idéaux de A/I sont de la forme J/I avec $I \subset J \subset A$ un idéal, et que l'on a $(A/I)/(J/I) \cong A/J$.
- (b) Soit $B \subset A$ un sous-anneau de A. Démontrer que B+I est un sous-anneau de A et que I est un idéal de B+I.
- (c) Démontrer que $B \cap I$ est un idéal de A et que $(B+I)/I \cong B/(B \cap I)$.

Exercice 6. Démontrer que les applications suivantes sont des morphismes d'anneaux et déterminer des générateurs de leurs noyaux respectifs :

- (a) $f: \mathbb{K}[X] \to \mathbb{K}, f(P) := P(a)$ (\mathbb{K} est un corps). (d) $j: \mathbb{Q}[X,Y] \to \mathbb{Q}, \quad j(P) := P(0, 1).$
- (b) $g: \mathbb{R}[X] \to \mathbb{C}$, g(P) := P(i).
- (c) $h: \mathbb{Z}[X] \to (\mathbb{Z}/n\mathbb{Z})[X]$, $h(P) \coloneqq P$. (e) $k: \mathbb{R}[X,Y] \to \mathbb{R}[X]$, $k(P) \coloneqq P(X,X^2)$.

Exercice 7. Soit \mathbb{K} un corps.

- (a) Démontrer que $\mathbb{K}[X,Y]/(X^2+Y^2-1)$ est intègre lorsque $\operatorname{car}(\mathbb{K}) \neq 2$. Est-ce un corps?
- (b) Démontrer que $\mathbb{Z}[X]/(2, X^4 + X + 1)$ est un corps.
- (c) Démontrer que $\mathbb{K}[X,Y]/(Y-X^2)$ est principal.
- (d) Démontrer que $\mathbb{K}[X, X^{-1}] := \mathbb{K}[X, Y]/(XY 1)$ est principal.

Exercice 8. Soit \mathbb{K} un corps et $P \in \mathbb{K}[X]$ un polynôme non nul. Démontrer que $\mathbb{K}[X]/(P)$ est un \mathbb{K} -espace vectoriel de dimension $\deg(P)$.

Exercice 9. Soit $f: \mathbb{Z} \to \mathbb{Z}/14\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z}$ le morphisme canonique.

- (a) Quel est le noyau et l'image de f?
- (b) Expliciter l'isomorphisme inverse $\operatorname{im}(f) \to \mathbb{Z}/\ker(f)$.
- (c) Faire de même pour $\mathbb{Q}[X] \to \mathbb{Q}[X]/(X^3-2) \times \mathbb{Q}[X]/(X^2+1)$.

Exercice 10. Soit V un K-espace vectoriel de dimension finie et $u \in \text{End}(V)$, de polynôme minimal $\mu \in K[X]$.

- (a) Décrire $\mathbb{K}[X]/(\mu)$ en termes d'endomorphismes de V.
- (b) Démontrer que l'anneau $\mathbb{K}[X]/(\mu)$ est principal.

Exercice 11. On pose $j := \exp(2i\pi/3) \in \mathbb{C}$ et on note $\mathbb{Z}[j]$ (resp., $\mathbb{Q}[j]$) le sous-anneau (resp., sous-corps) de \mathbb{C} contenant j.

- (a) Décrire les éléments de $\mathbb{Z}[j]$ et $\mathbb{Q}[j]$.
- (b) Démontrer que pour tout $z \in \mathbb{C}$, il existe $w \in \mathbb{Z}[j]$ tel que |z w| < 1.
- (c) Démontrer que $\mathbb{Z}[j]$ est euclidien.

Exercice 12. Soit \mathbb{K} un corps et $A = \mathbb{K}[X,Y]/(X^2,Y^2,XY)$.

- (a) Déterminer les éléments inversibles de A.
- (b) Déterminer les idéaux principaux de A.
- (c) Déterminer tous les idéaux de A.

Exercice 13. On considère la courbe $\mathcal{C} = \{(x,y) \in \mathbb{C}^2 \mid y^2 = x^3\}$. On dit qu'une fonction $f: \mathcal{C} \to \mathbb{C}$ est polynômiale si c'est la restriction à \mathcal{C} d'une fonction polynômiale $\mathbb{C}^2 \to \mathbb{C}$.

- (a) Démontrer que l'ensemble A des fonctions polynômiales sur $\mathcal C$ forme un anneau.
- (b) Démontrer que A est isomorphe à l'anneau :

$$\mathbb{C}[T^2, T^3] \coloneqq \{P(T^2, T^3) \mid P \in \mathbb{C}[X, Y]\} \subset \mathbb{C}[T].$$

On pourra utiliser la paramétrisation $\mathcal{C} = \{(t^2, t^3) \mid t \in \mathbb{C}\}$. Décrire les éléments de $\mathbb{C}[T^2, T^3]$.

- (c) Démontrer que A est intègre.
- (d) Démontrer que les fonctions $\alpha, \beta \in A$ sont des éléments irréductibles de A:

$$\alpha(x,y) := x, \quad \beta(x,y) := y.$$

- (e) Soit $J = \{ f \in A \mid f(0, 0) = 0 \}$. Démontrer que J est un idéal de A et déterminer une famille génératrice. Démontrer que A n'est pas principal.
- (f) Démontrer que $A/J \cong \mathbb{C}$.
- (g) Démontrer que $A \cong \mathbb{C}[X,Y]/(Y^2-X^3)$. Est-ce que cet anneau quotient est principal, euclidien?
- (h) Est-ce que A est factoriel?

Exercice 14. Soit $A = \{x + iy\sqrt{5} \mid x, y \in \mathbb{Z}\}$. Étant donné $z \in A$, on note sa norme $N(z) := z\overline{z}$.

- (a) Démontrer que les éléments inversibles de A sont exactement les éléments de norme 1.
- (b) Démontrer que tous les éléments de norme 9 sont irréductibles.
- (c) Démontrer que A n'est pas factoriel. Indication : considérer des produits d'éléments de norme 9 bien choisis.

Exercice 15. On note $\xi = (1 + i\sqrt{19})/2$ et on note $\mathbb{Z}[\xi]$ le sous-anneau de \mathbb{C} engendré par ξ .

- (a) Démontrer que tout élément de $\mathbb{Z}[\xi]$ s'écrit de manière unique sous la forme $x+y\xi$ avec $x,y\in\mathbb{Z}$.
- (b) Démontrer que pour tout $z \in \mathbb{Z}[\xi]$, le conjugué \overline{z} appartient à $\mathbb{Z}[X]$ et que la norme $z\overline{z}$ est un entier.
- (c) Démontrer que $\mathbb{Z}[\xi]$ est intègre.
- (d) Démontrer que $z \in \mathbb{Z}[\xi]$ est inversible si et seulement si $z\overline{z} = 1$.
- (e) Étant donnés $x, y \in \mathbb{Z}$, démontrer que $x^2 + xy + 5y^2 \ge 4y^2$. En déduire que $\mathbb{Z}[\xi]^{\times} = \{\pm 1\}$.
- (f) Démontrer que $\mathbb{Z}[\xi]$ est isomorphe à $\mathbb{Z}[X]/(X^2-X+5)$.

Exercice 16. Soit $d \in \mathbb{Z}$ un entier sans facteur carré.

- (a) Démontrer que $\mathbb{Z}[\sqrt{d}]$ est un sous-anneau de \mathbb{C} . À quelle condition est-ce un réseau de \mathbb{C} ?
- (b) On suppose désormais que d < 0. Démontrer que $\nu(z) := z\overline{z}$ est multiplicative et à valeurs dans \mathbb{N} .
- (c) Démontrer que ν est un stathme euclidien si et seulement si pour tout $z \in \mathbb{Q}[\sqrt{d}]$, la boule unité centrée en z rencontre un point de $\mathbb{Z}[\sqrt{d}]$.
- (d) Démontrer que cela n'est le cas que si d = -1 ou d = -2.

Exercice 17. Soit p un nombre premier impair. On rappelle que $\mathbb{Z}[i] = \mathbb{Z}[\sqrt{-1}]$ est un anneau euclidien.

- (a) Démontrer que s'il existe $a, b \in \mathbb{Z}$ tels que $p = a^2 + b^2$, alors $p \equiv 1 \pmod{4}$.
- (b) On suppose désormais que $p \equiv 1 \pmod{4}$. Démontrer qu'il existe $\alpha \in \mathbb{Z}$ tel que $\alpha^2 \equiv -1 \pmod{p}$.
- (c) Démontrer que la fonction suivante définit un morphisme d'anneaux :

$$\mathbb{Z}[i] \to (\mathbb{Z}/p\mathbb{Z})^2, \quad a + bi \mapsto (a + \alpha b, a - \alpha b).$$

Déterminer son noyau et son image.

(d) En déduire que p est réductible dans $\mathbb{Z}[i]$ et qu'il existe $a, b \in \mathbb{Z}$ tels que $p = a^2 + b^2$.

Exercice 18. (Anneau des entiers de Gauss.)

- (a) Démontrer que 1+i est irréductible dans $\mathbb{Z}[i]$. Factoriser $2 \in \mathbb{Z}[i]$. Est-ce que les irréductibles qui apparaissent sont associés?
- (b) Soit $p \equiv 3 \pmod{4}$ un nombre premier. Démontrer que p est irréductible dans $\mathbb{Z}[i]$.
- (c) Soit $p \equiv 1 \pmod{1}$ un nombre premier. Démontrer que $p = \alpha \overline{\alpha}$ avec $\alpha \in \mathbb{Z}[i]$ irréductible et que α et $\overline{\alpha}$ ne sont pas associés.
- (d) Soit $\alpha \in \mathbb{Z}[i]$ irréductible et $(\alpha) \subset \mathbb{Z}[i]$ l'idéal engendré par α . Démontrer que $\mathbb{Z} \cap (\alpha) = p\mathbb{Z}$ pour un nombre premier p, et que p est le seul nombre premier divisible par α dans $\mathbb{Z}[i]$.
- (e) En déduire que les irréductibles de $\mathbb{Z}[i]$ sont les nombres premiers p congrus à 3 mod 4 et les entiers de Gauss de la forme $\alpha = x + iy$ avec $x^2 + y^2$ premier.
- (f) Factoriser -3 + 15i dans $\mathbb{Z}[i]$.

Exercice 19. Soit $p \in \mathbb{Z}$ un nombre premier. Combien existe-t-il de couples $(a,b) \in \mathbb{Z}^2$ tels que $p = a^2 + b^2$? **Exercice 20**. Soit A un anneau, que l'on ne suppose pas nécessairement commutatif. On dit que $a \in A$ est idempotent si $a^2 = a$. On suppose que tous les éléments de A sont idempotents.

- (a) Démontrer que A est commutatif et que sa caractéristique vaut 2.
- (b) Donner un exemple d'un tel anneau A.
- (c) Dans quel cas A est-il intègre?
- (d) Démontrer qu'on peut munir A d'une structure d'espace vectoriel sur $\mathbb{Z}/2\mathbb{Z}$. En déduire que si A est fini, alors il existe $n \in \mathbb{N}$ tel que $|A| = 2^n$.
- (e) On suppose maintenant que A est un anneau commutatif quelconque, et que $A = A_1 \times A_2$ pour des anneaux $A_1, A_2 \neq \{0\}$. Démontrer que A possède au moins quatre éléments idempotents.