${ m TD3}: { m Polynômes irréductibles sur} \ Z$

M1 MIC – Algèbre

Année 2025–2026

Exercice 1. Soit \mathbb{K} un corps.

- (a) Quels sont les polynômes irréductibles de degré ≤ 1 ?
- (b) Pour $P \in \mathbb{K}[X]$ de degré 2 ou 3, démontrer que P est irréductible dans $\mathbb{K}[X]$ si et seulement si P n'a pas de racine dans \mathbb{K} .
- (c) Quels sont les polynômes irréductibles unitaires de degré ≤ 3 sur $\mathbb{Z}/2\mathbb{Z}$? Sur $\mathbb{Z}/3\mathbb{Z}$?
- (d) Pour $P \in \mathbb{K}[X]$ de degré ≥ 4 , y a-t-il un lien entre l'irréductibilité de P et l'absence de racine de P dans \mathbb{K} ?
- **Exercice 2**. On considère le polynôme $P = X^4 2X^2 + 9$. Déterminer les racines complexes de P et une factorisation de P en polynômes irréductibles dans $\mathbb{C}[X]$. En déduire une factorisation en irréductibles dans $\mathbb{R}[X]$. Le polynôme P est-il irréductible dans $\mathbb{Q}[X]$?
- **Exercice 3**. Factoriser en irréductibles le polynôme $1 + X^2 + X^4$ dans $\mathbb{C}[X]$. Idem dans $\mathbb{R}[X]$ puis dans $\mathbb{Q}[X]$.
- **Exercice 4.** Démontrer que $X^3 + X + 1$ est irréductible modulo 2. En déduire que $X^3 + 24X^2 X + 5$ est irréductible dans $\mathbb{Q}[X]$ et dans $\mathbb{Z}[X]$.

Exercice 5. étudier l'irréductibilité des polynômes suivants dans $\mathbb{Z}[X]$ et $\mathbb{Q}[X]$:

- (a) $P_a = X^3 + 4X^2 5X + 7$;
- (b) $P_b = X^3 6X^2 4X + 13$;
- (c) $P_c = X^4 + 5X^3 3X^2 X + 7$;
- (d) $P_d = X^6 + X^3 + 1$;
- (e) $P_e = X^7 + X + 1$;
- (f) $P_f = X^5 7$.