TD4 : Polynômes irréductibles et extensions

M1 MIC – Algèbre

Année 2025–2026

Exercice 1. Soit \mathbb{K} un corps et $P \in \mathbb{K}[X]$. À quelle condition l'anneau quotient $\mathbb{K}[X]/(P)$ est-il un corps? Dans ce cas, quel est le degré de l'extension $\mathbb{K} \subset \mathbb{K}[X]/(P)$?

Exercice 2. Soient \mathbb{K} un corps et $P \in \mathbb{K}[X]$ de degré $n \geq 2$.

- (a) Démontrer que P est irréductible sur \mathbb{K} si, et seulement si, P n'a pas de racines dans les extensions \mathbb{L} de \mathbb{K} telles que $[\mathbb{L} : \mathbb{K}] \leq \frac{n}{2}$.
- (b) Application : Démontrer que $P(X) = X^4 + 1$ est irréductible sur \mathbb{Z} mais est réductible sur \mathbb{F}_p pour tout p premier.

Exercice 3. Soient \mathbb{K} un corps, $P \in \mathbb{K}[X]$ irréductible de degré $n \geq 2$ et \mathbb{L} une extension de degré m avec $m \wedge n = 1$. Démontrer qu'alors P est encore irréductible sur \mathbb{L} .

Exercice 4. (a) Démontrer que $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ est une base de $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

- (b) Quel est le polynôme minimal de $\sqrt{2} + \sqrt{3}$ sur \mathbb{Q} ?
- (c) En déduire que $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.
- (d) Déterminer le groupe des automorphismes (de corps) de $\mathbb{Q}(\sqrt{2} + \sqrt{3})$.

Exercice 5. On considère le polynôme $\Phi_5 := 1 + X + X^2 + X^3 + X^4 \in \mathbb{Z}[X]$.

- (a) Décomposer Φ_5 en irréductibles dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.
- (b) Démontrer que Φ_5 est irréductible dans $\mathbb{Q}[X]$ et $\mathbb{Z}[X]$. En déduire que $\cos(2\pi/5)$ est irrationnel.
- (c) Généraliser le raisonnement précédent pour démontrer que pour tout nombre premier $p \geq 5$, $\cos(2\pi/p)$ est irrationnel.