TD6 : Corps finis

M1 MIC – Algèbre

Année 2025–2026

Exercice 1. Existe-t-il un corps à 8 éléments? 9 éléments? 12 éléments?

Exercice 2. Soit q, q' deux puissances de nombres premiers. À quelle condition le corps $\mathbb{F}_{q'}$ est-il une extension de \mathbb{F}_q ?

Exercice 3. (a) Déterminer tous les polynômes irréductibles de degré 4 sur \mathbb{F}_2 .

- (b) Pourquoi les anneaux $\mathbb{F}_2[X]/(X^4+X^3+X^2+X+1)$ et $\mathbb{F}_2[X]/(X^4+X+1)$ sont-ils isomorphes?
- (c) Calculer l'ordre multiplicatif de la classe de X dans chacun de ces quotients.
- (d) Construire un isomorphisme explicite.

Exercice 4. (a) Quels sont les sous-corps de \mathbb{F}_{64} ?

- (b) Combien existe-t-il de générateurs de l'extension $\mathbb{F}_2 \subset \mathbb{F}_{64}$, c'est-à-dire d'éléments $x \in \mathbb{F}_{64}$ tels que $\mathbb{F}_{64} = \mathbb{F}_2(x)$?
- (c) Combien le groupe \mathbb{F}_{64}^{\times} a-t-il de générateurs?
- (d) Est-ce qu'il y a un lien entre ces deux notions?

Exercice 5. Soit $\mathbb{K} \subset \mathbb{L}$ une extension finie de corps.

- (a) Si $[\mathbb{L} : \mathbb{K}]$ est un nombre premier, démontrer que l'extension est monogène.
- (b) Soit $P \in \mathbb{K}[X]$ un polynôme irréductible. Démontrer que si $\deg(P)$ et $[\mathbb{L} : \mathbb{K}]$ sont premiers entre eux, alors P est irréductible sur \mathbb{L} .
- (c) Soit $\alpha \in \mathbb{K}$ un élément algébrique de degré impair. Démontrer que $\mathbb{K}(\alpha) = \mathbb{K}(\alpha^2)$.

Exercice 6. Corps à huit, neuf et seize éléments.

- (a) Dresser une liste de tous les polynômes irréductibles de degré inférieur ou égal à 4 sur les corps \mathbb{F}_2 et \mathbb{F}_3 .
- (b) Parmi les polynômes précédents, lesquels ont pour corps de rupture \mathbb{F}_9 et \mathbb{F}_8 ? écrire la table de multiplication du corps correspondant dans ces cas.
- (c) Donner des isomorphismes explicites entre les corps ainsi obtenus.
- (d) Dans chacun des cas, est-ce que l'élément primitif canonique (la classe de X dans le quotient $\mathbb{K}[X]/(P)$) est un générateur du groupe multiplicatif du corps?
- (e) Démontrer que \mathbb{F}_8^{\times} est cyclique.
- (f) Démontrer que tous les éléments de \mathbb{F}_8 sont algébriques sur \mathbb{F}_2 et donner leurs polynômes minimaux.
- (g) Reprendre les trois dernières questions en remplaçant \mathbb{F}_8 par \mathbb{F}_{16} .

Exercice 7. Soit p un nombre premier et a un nombre premier avec p. On veut démontrer que le polynôme $P = X^p - X - a$ est irréductible sur \mathbb{F}_p et sur \mathbb{Q} .

- (a) Soit \mathbb{K} une extension de \mathbb{F}_p dans laquelle P possède une racine notée α . Démontrer que les racines de P dans \mathbb{K} sont $\alpha, \alpha + 1, \ldots, \alpha + p 1$.
- (b) Soit $U \in \mathbb{F}_p[X]$ un polynôme irréductible unitaire de degré $d \ge 1$ qui divise P. Démontrer que P est divisible par U(X+j) pour tout $j \in \{0, \dots, p-1\}$.
- (c) En déduire que d=p et donc que U=P. On pourra distinguer le cas où les U(X+j) sont deux à deux distincts et le cas où U(X+j)=U(X+k) avec $j\neq k$.
- (d) En déduire que P est irréductible sur \mathbb{F}_p , puis sur \mathbb{Q} .

Exercice 8. (a) Le nombre 2 est-il un carré dans \mathbb{F}_5 ?

- (b) Démontrer que $P = X^2 + X + 1$ est irréductible dans $\mathbb{F}_5[X]$.
- (c) Quelle est la caractéristique de \mathbb{F}_{25} ?
- (d) Démontrer que le quotient $\mathbb{F}_5[X]/(P)$ est isomorphe à \mathbb{F}_{25} et que P a deux racines dans \mathbb{F}_{25} .
- (e) On note α une racine de P dans \mathbb{F}_{25} . Démontrer que tout $\beta \in \mathbb{F}_{25}$ peut s'écrire de manière unique sous la forme $\beta = x + \alpha y$ avec $x, y \in \mathbb{F}_5$.
- (f) Soit $Q = X^5 X + 1$. Déterminer $c, d \in \mathbb{F}_5$ tels que $Q(\alpha) = c + d\alpha$.
- (g) En utilisant le résultat de la question d, démontrer que pour tout $\beta \in \mathbb{F}_{25}$, on a $Q(\beta) \neq 0$.
- (h) En déduire que Q est irréductible dans $\mathbb{F}_5[X]$. Le polynôme Q est-il irréductible dans $\mathbb{Q}[X]$?
- (i) Le polynôme Q est-il irréductible dans $\mathbb{F}_{25}[X]$?

Exercice 9. Soit $n \ge 1$ un entier et p un nombre premier. Soit P un polynôme irréductible de degré d dans $\mathbb{F}_p[X]$.

- (a) Démontrer que le quotient $\mathbb{K} := \mathbb{F}_p[X]/(P(X))$ est un corps. Quel est l'ordre du groupe multiplicatif \mathbb{K}^{\times} ? En déduire que tout élément $x \in \mathbb{K}$ vérifie $x^{p^d} = x$.
- (b) Démontrer ensuite que P divise $X^{p^n} X$ si et seulement si d divise n. On redémontrera un résultat du cours si nécessaire.
- (c) Soit $Q_n := X^{p^n} X$. Calculer Q'_n , le polynôme dérivé de Q_n . En déduire que Q_n n'est divisible par aucun carré de polynôme de degré ≥ 1 .
- (d) Démontrer que, dans $\mathbb{F}_p[X]$, le polynôme Q_n est le produit de tous les polynômes unitaires irréductibles dont le degré divise n.
- (e) On prend n=4 et p=2. Retrouver l'ensemble des polynômes irréductibles de degré 2 puis 4 dans $\mathbb{F}_2[X]$.
- (f) Soit R un polynôme de degré n dans $\mathbb{F}_p[X]$. Démontrer que R est irréductible si, et seulement si, les deux assertions suivantes sont vérifiées :
 - i. Le polynôme R divise Q_n .
 - ii. Pour tout diviseur premier q de n, le polynôme R est premier avec le polynôme $Q_{n/a}$.