TD7: Théorie de Galois

M1 MIC – Algèbre

Année 2025–2026

Exercice 1. Démontrer que les extensions suivantes sont galoisiennes, déterminer leur degré et leur groupe de Galois :

(a) $\mathbb{R} \subset \mathbb{C}$.

(b) $\mathbb{F}_q \subset \mathbb{F}_{q^n}$.

(c) $\mathbb{Q} \subset \mathbb{Q}(e^{\frac{2i\pi}{n}})$ (où $n \geq 2$).

Exercice 2. On considère l'extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{3}, \sqrt{5})$. Quel est son degré? Démontrer que c'est une extension galoisienne. Déterminer ses sous-corps. Déterminer un élément primitif.

Exercice 3. On note $\alpha = \sqrt[4]{2}$ et $\beta = \sqrt[5]{2}$ et on pose $\mathbb{K} = \mathbb{Q}(\alpha) \subset \mathbb{L} = \mathbb{Q}(\alpha, \beta)$.

- (a) Déterminer les polynômes minimaux P et Q de α et β sur \mathbb{Q} . Quelles sont les racines (complexes) de ces polynômes?
- (b) On note $\mathbb{L}' \subset \mathbb{C}$ le sous-corps engendré par les racines de P et Q. Combien y-a-t-il de morphismes $\mathbb{L} \to \mathbb{L}'$? Décrivez les.
- (c) Déterminer le polynôme minimal de β sur $\mathbb{Q}(\alpha)$.
- (d) Que vaut $[\mathbb{L} : \mathbb{Q}]$?
- (e) Déterminer $Gal(\mathbb{K}/\mathbb{Q})$ et $Gal(\mathbb{L}/\mathbb{Q})$.
- (f) Les extensions $\mathbb{Q} \subset \mathbb{K}$ et $\mathbb{Q} \subset \mathbb{L}$ sont-elles galoisiennes?