TD8 : Formes normales de Smith

M1 MIC – Algèbre

Année 2025–2026

Exercice 1. Faire le lien entre la multiplication par l'une des matrices qui suivent avec les opérations élémentaires :

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ b & a & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & b & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

1. $L_1 \leftrightarrow L_2$

2. $L_1 \leftarrow L_1 + \alpha L_2$

8. $C_1 \leftarrow C_1 + \alpha C_2$

3. $L_2 \leftarrow L_2 + \alpha L_1$

9. $C_2 \leftarrow C_2 + \alpha C_1$

4. $L_1 \leftarrow L_2$, $L_2 \leftarrow L_3$, et $L_3 \leftarrow L_1$

10. $C_1 \leftarrow C_2, C_2 \leftarrow C_3, \text{ et } C_3 \leftarrow C_1$

5. $L_1 \leftarrow L_1 + \alpha L_2$ et $L_3 \leftarrow L_3 + \beta L_2$

11. $C_1 \leftarrow C_1 + \alpha C_2$ et $C_3 \leftarrow C_3 + \beta C_2$

12. $C_3 \leftarrow C_3 + \alpha C_1 + \beta C_2$

6. $L_3 \leftarrow L_3 + \alpha L_1 + \beta L_2$

Exercice 2. À quelle matrice correspond l'opération $C_i \leftarrow \sum_{j=1}^n a_j C_j$? L'opération $L_i \leftarrow \sum_{j=1}^n a_j L_j$? Exercice 3. (a) Est-ce que l'ensemble des matrices inversibles à coefficients entiers forme un sous-groupe de $GL_2(\mathbb{R})$?

- (b) Calculer le produit $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ et en déduire que si $a,b,c,d \in \mathbb{Z}$, alors l'inverse de $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est à coefficients entiers si et seulement si $ad - bc = \pm 1$.
- (c) En déduire que $GL_2(\mathbb{Z}) = \{A \in \mathcal{M}_2(\mathbb{R}) \mid \det(A) = \pm 1\}.$
- (d) Vérifier que les matrices du premier exercice sont unimodulaires (de déterminant ± 1).

Exercice 4. À l'aide d'opérations élémentaires, sur les lignes et les colonnes, déterminer les formes normales de Smith des matrices suivantes :

(a)
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

(b) $B = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$

(d)
$$D = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$$

(b)
$$B = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$$

(e)
$$E = \begin{pmatrix} 1 & 2 & 2 \\ -3 & 3 & 6 \\ 5 & -2 & -8 \end{pmatrix}$$

(c)
$$C = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$

Exercice 5. Soit $A = \langle v_1, \dots, v_r \rangle \leq \mathbb{Z}^p$ un sous-groupe de \mathbb{Z}^p engendré par une famille (v_1, \dots, v_r) de vecteurs (colonnes) $v_i \in \mathbb{Z}^p$. Pour déterminer une base de A, il suffit de considérer la matrice $M \in \mathcal{M}_{p,r}(\mathbb{Z})$ dont les colonnes sont les v_i , d'échelonner cette matrice en effectuant des opérations sur les colonnes uniquement et de garder les colonnes non nulles. Appliquer cette procédure aux deux sous-groupes suivants:

- (a) Le sous-groupe $A_1 \leq \mathbb{Z}^3$ engendré par $v_1 = (1, 0, -1), v_2 = (4, 3, -1), v_3 = (0, 9, 3),$ et
- (b) Le sous-groupe $A_2 \leq \mathbb{Z}^4$ engendré par $w_1 = (9, 1, 4, 7), w_2 = (6, 2, 5, 8)$ et $w_3 = (12, 4, 8, 10)$.

Exercice 6. Soit $A = \langle v_1, \ldots, v_r \rangle \leq \mathbb{Z}^p$ et M comme dans l'exercice précédent. Pour obtenir la structure de groupe abélien de \mathbb{Z}^p/A , il suffit de :

- 1. calculer la forme normale de Smith UMV = D de la matrice M;
- 2. les coefficients diagonaux de D sont notés $d_1 \mid d_2 \mid \ldots \mid d_s$, où $s = \min(r, p)$;
- 3. le quotient est isomorphe à $\mathbb{Z}/d_1\mathbb{Z} \times \ldots \times \mathbb{Z}/d_s\mathbb{Z} \times \mathbb{Z}^{p-s}$ (avec $\mathbb{Z}/1\mathbb{Z} = 0$ et $\mathbb{Z}/0\mathbb{Z} = \mathbb{Z}$).

Reprendre les sous-groupes A_1 et A_2 de l'exercice précédent et déterminer la structure des quotients.

Exercice 7. Soit $A = \langle v_1, \ldots, v_r \rangle \leq \mathbb{Z}^p$ et M comme dans l'exercice précédent. On dit qu'une base (e_1, \ldots, e_p) de \mathbb{Z}^p est une base adaptée à A si A est engendrée par la famille (d_1e_1, \ldots, d_pe_p) où les d_i sont les facteurs invariants (on omet d_ie_i si $d_i = 0$, et on note $d_i = 0$ si i > r).

On en détermine une de la façon suivante :

- 1. on calcule la forme normale de Smith UMV = D;
- 2. la matrice $U \in GL_p(\mathbb{Z})$ représente les opérations effectuées sur les lignes, que l'on garde en mémoire;
- 3. les colonnes de U^{-1} forment alors une base de \mathbb{Z}^p adaptée à A.

Reprendre les sous-groupes A_1 et A_2 de l'exercice précédent et déterminer une base adaptée de \mathbb{Z}^p dans chacun des cas.

Exercice 8. Déterminer tous les groupes abéliens (à isomorphisme près) d'ordre 72.