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1 Topological spaces

1.1 Convex bodies ⋆

A convex body is a compact, convex subset 𝐾 ⊆ ℝ𝑛 which contains 0 as an interior point and which is
symmetric around the origin.

1. Prove that the following formula defines a norm on ℝ𝑛:

𝑁(𝑥) ≔ inf{𝜆 > 0 ∣ 𝑥/𝜆 ∈ 𝐾}.

2. Prove that 𝐾 is homeomorphic to 𝔻𝑛 and that 𝜕𝐾 is homeomorphic to 𝕊𝑛−1.

1.2 Wedge sum ⋆

Let 𝑋, 𝑋′ be topological spaces and 𝑥 ∈ 𝑋, 𝑥′ ∈ 𝑋′ be base points. Prove that the wedge sum 𝑋 ∨ 𝑋′ is
homeomorphic to the subspace:

(𝑋 × {𝑥′}) ∪ ({𝑥} × 𝑋′) ⊆ 𝑋 × 𝑋′.

1.3 Torus ⋆

The torus 𝕋 is the quotient of [0, 1]2 by the equivalence relation generated by (𝑥, 0) ∼ (𝑥, 1) and
(0, 𝑦) ∼ (1, 𝑦) for all 𝑥, 𝑦 ∈ [0, 1]. Prove that 𝕋 is homeomorphic to:

1. The product 𝕊1 × 𝕊1.
2. The quotient of ℝ2 under the action of the (discrete) group ℤ2 by translations.

1.4 Quotient and Hausdorff property

1. Let 𝐴 be a compact subspace of a Hausdorff space 𝑋. Prove that 𝑋/𝐴 is Hausdorff.
2. Let 𝐺 be a compact Hausdorff group acting on a Hausdorff space 𝑋. Prove that the orbit space

𝑋/𝐺 is Hausdorff.
3. Let 𝐺𝐿𝑛(ℂ) act on ℳ𝑛(ℂ) by conjugation. Prove that the quotient ℳ𝑛(ℂ)/𝐺𝐿𝑛(ℂ) is Hausdorff.
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Algebraic Topology exercises 2 Homotopy

1.5 Spheres

Consider the orthogonal group 𝑂𝑛−1(ℝ) as the subgroup of 𝑂𝑛(ℝ) of matrices of the form:

(1 0
0 𝐴) ∈ 𝑂𝑛(ℝ), 𝐴 ∈ 𝑂𝑛−1(ℝ).

Let 𝑂𝑛−1(ℝ) act on 𝑂𝑛(ℝ) by left multiplication. Prove that the orbit space 𝑂𝑛(ℝ)/𝑂𝑛−1(ℝ) is
homeomorphic to 𝕊𝑛−1.

1.6 Projective spaces ⋆

Let 𝕂 = ℝ or ℂ. The 𝑛-dimensional projective space 𝕂ℙ𝑛 is the orbit space of 𝕂𝑛+1 −{0} under the
action of 𝕂∗ by rescaling.

1. Prove that ℝℙ𝑛 is homeomorphic to the orbit space 𝕊𝑛/{±1}, where {±1} acts by multiplication
on 𝕊𝑛 ⊆ ℝ𝑛+1.

2. Prove that ℂℙ𝑛 is homeomorphic to the orbit space 𝕊2𝑛+1/𝕊1, where 𝕊1 = {𝑧 ∈ ℂ ∣ |𝑧| = 1} acts
on 𝕊2𝑛+1 ⊆ ℂ𝑛+1 by multiplication.

3. Prove that ℝℙ1 is homeomorphic to 𝕊1 and that ℂℙ1 is homeomorphic to 𝕊2.

1.7 The line with two origins

Let 𝑋 be the quotient of ℝ × {−1, 1} under the equivalence relation generated by (𝑥, −1) ∼ (𝑥, 1) for
all 𝑥 ≠ 0. Prove that any point of 𝑋 admits a neighborhood homeomorphic to ℝ but that 𝑋 is not a
topological manifold.

1.8 Connectedness of manifolds

Let 𝑋 be a topological manifold.
1. Prove that 𝑋 is connected if and only if it is path connected.
2. Prove that if 𝑋 is connected, then for all 𝑥, 𝑦 ∈ 𝑋, there exists a homeomorphism 𝑓 ∶ 𝑋 → 𝑋 such

that 𝑓 (𝑥) = 𝑦. (Start with the case of an open disk.)

2 Homotopy

2.1 Möbius band ⋆

Let 𝑀 be the Möbius band, that is, the quotient of [0, 1]2 under the equivalence relation generated by
(𝑥, 0) ∼ (1 − 𝑥, 1) for all 𝑥 ∈ [0, 1]. Prove that 𝑀 is homotopy equivalent to 𝕊1.

2.2 Latin alphabet ⋆

Classify the uppercase letters of the Latin alphabet (A, B, C…) by homotopy type.

2.3 Homotopy type of basic spaces

1. If 𝑋 ≃ 𝑋′ and 𝑌 ≃ 𝑌′, prove that 𝑋 × 𝑌 ≃ 𝑋′ × 𝑌′.
2. Let 𝐸 be a vector subspace of ℝ𝑛 of dimension 𝑘 < 𝑛. Prove that ℝ𝑛 −𝐸 ≃ 𝕊𝑛−𝑘−1.
3. Let 𝐶 ⊆ ℝ𝑛 be a nonempty bounded convex subset. Prove that ℝ𝑛 −𝐶 ≃ 𝕊𝑛−1.
4. Find an example of a space 𝑋 and subspaces 𝐴, 𝐵 ⊆ 𝑋 such that 𝐴 ≃ 𝐵 but 𝑋 −𝐴 ≄ 𝑋 −𝐵.
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2.4 Cones ⋆

Let 𝑋 be space. The cone 𝐶𝑋 is the quotient space:

𝐶𝑋 = (𝑋 × [0, 1])/(𝑋 × {0}).

Let 𝜋 ∶ 𝑋 × [0, 1] → 𝐶𝑋 be the quotient map and 𝜄 ∶ 𝑋 → 𝐶𝑋, 𝑥 ↦ 𝜋(𝑥, 1).
1. Let 𝑓 ∶ 𝑋 → 𝑌 be a map. Prove that 𝑓 is homotopic to a constant map if and only if the exists

𝑓 ′ ∶ 𝐶𝑋 → 𝑌 such that 𝑓 ′ ∘ 𝜄 = 𝑓.
2. Prove that 𝐶𝕊𝑛 is homeomorphic to 𝔻𝑛+1.
3. Prove that for all 𝑋, 𝐶𝑋 is contractible.

2.5 Linear groups ⋆

1. Prove that the inclusion 𝑂𝑛(ℝ) → 𝐺𝐿𝑛(ℝ) is a homotopy equivalence. (Use the Gram–Schmidt
orthonormalization procedure to construct the reverse map).

2. Among the following matrix groups, determine which ones are compact, and determine their 𝜋0:

𝐺𝐿𝑛(ℂ), 𝐺𝐿𝑛(ℝ), 𝑂𝑛(ℝ), 𝑆𝑂𝑛(ℝ), 𝑈𝑛(ℂ), 𝑆𝑈𝑛(ℂ).

2.6 Path components of functional spaces ⋆

Let 𝑋 be a compact Hausdorff space and 𝑌 be a metric space. We consider the space 𝒞(𝑋, 𝑌) of
continuous maps 𝑋 → 𝑌 endowed with the metric

𝑑∞(𝑓 , 𝑔) = inf{𝑑𝑌(𝑓 (𝑥), 𝑔(𝑥)) ∣ 𝑥 ∈ 𝑋}.

Prove that twomaps 𝑓 , 𝑔 ∈ 𝒞(𝑋, 𝑌) are homotopic if and only if they belong to the same path component.

2.7 Fundamental group of a product ⋆

Let 𝑋, 𝑌 be spaces and 𝑥0 ∈ 𝑋, 𝑦0 ∈ 𝑌 be base points. Prove that there is an isomorphism:

𝜋1(𝑋, 𝑥0) × 𝜋1(𝑌, 𝑦0) ≅ 𝜋1(𝑋 × 𝑌, (𝑥0, 𝑦0)).

2.8 Eckmann–Hilton principle

Let 𝑋 be a set equipped with two group structures (𝑋, ∗, 1) and (𝑋, •, 1) which are compatible, that
is, their unit is the same and for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑋:

(𝑎 ∗ 𝑏) • (𝑐 ∗ 𝑑) = (𝑎 • 𝑐) ∗ (𝑏 • 𝑑).

1. Prove that for all 𝑎, 𝑏 ∈ 𝑋, 𝑎 ∗ 𝑏 = 𝑎 • 𝑏 and that 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎.
2. Let 𝐺 be a topological group. Prove that 𝜋1(𝐺, 1) is abelian.

2.9 Degree of a map on the circle ⋆

Let 𝑓 ∶ 𝕊1 → 𝕊1 be a continuous map and let 𝑥 ∈ 𝕊1. We let 𝑛𝑥 ∈ ℤ be the integer such that the
following diagram commutes:

𝜋1(𝕊1, 𝑥) 𝜋1(𝕊1, 𝑓 (𝑥))

ℤ ℤ

𝜋1(𝑓 )

≅ ≅
×𝑛𝑥
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1. Prove that for any path 𝛾 ∈ Ω𝑥,𝑦𝑋 starting at 𝑥 and ending at some 𝑦, and for all [𝛼] ∈ 𝜋1(𝕊1, 𝑥),
if we let 𝜙𝛾([𝛼]) ≔ [𝛾−1𝛼𝛾], then deg(𝜙𝛾([𝛼])) = deg(𝛼).

2. Prove that 𝑛𝑥 is independent of 𝑥. We call it the degree of 𝑓, denoted deg(𝑓 ).
3. Prove that deg(𝑔 ∘ 𝑓 ) = deg(𝑔) ⋅ deg(𝑓 ).
4. Prove that 𝑓 ≃ 𝑔 if and only if deg(𝑓 ) = deg(𝑔).
5. Prove that if deg(𝑓 ) ≠ 0, then 𝑓 is surjective. Find a counterexample for the converse.
6. Prove that if 𝑓 is injective, then deg(𝑓 ) = ±1. Find a counterexample for the converse.

2.10 Borsuk–Ulam theorem

We’d like to prove the Borsuk-Ulam theorem for 𝑛 = 1 and 𝑛 = 2: if 𝑓 ∶ 𝕊𝑛 → ℝ𝑛 is a continuous map,
then there exists 𝑥 ∈ 𝕊𝑛 such that 𝑓 (𝑥) = 𝑓 (−𝑥).

1. Prove the case 𝑛 = 1.
2. We now assume that 𝑛 = 2 and (by contradiction) assume that 𝑓 is a continuous map such that

for all 𝑥, 𝑓 (𝑥) ≠ 𝑓 (−𝑥).
a) Prove that if 𝑔 ∶ 𝕊1 → 𝕊1 satisfies 𝑔(−𝑥) = −𝑔(𝑥), then deg(𝑔) is odd.
b) Construct a map 𝜙 ∶ 𝕊2 → 𝕊1 such that for all 𝑥, 𝜙(−𝑥) = −𝜙(𝑥).
c) Let 𝑖 ∶ 𝕊1 → 𝕊2 be the inclusion of the circle as the equator of the sphere. Prove that 𝑖 is

homotopic to a constant map, whereas 𝑔 ∘ 𝑖 is not. Conclude.

2.11 Fundamental group of a suspension ⋆

Let 𝑋 be a space and let Σ𝑋 be its suspension, that is, the quotient of 𝑋 × [0, 1] by the equivalence
relation generated by (𝑥, 0) ∼ (𝑥′, 0) and (𝑥, 1) ∼ (𝑥′, 1) for all 𝑥, 𝑥′ ∈ 𝑋.

1. Prove that if 𝑋 is path connected, then Σ𝑋 is simply connected.
2. Find a counterexample when 𝑋 is not path connected.

2.12 Klein bottle

The Klein bottle 𝐾 is the quotient of [0, 1]2 by the equivalence relation generated by (𝑥, 0) ∼ (1 − 𝑥, 1)
and (0, 𝑦) ∼ (1, 𝑦) for all 𝑥, 𝑦 ∈ [0, 1].

1. Prove that 𝐾 is homeomorphic to two Möbius bands glued along their boundary.
2. Prove that the fundamental group of 𝐾 is isomorphic to a free group on two generators 𝑎, 𝑏

modulo the relation 𝑎2 = 𝑏2.
3. Compute the abelianization of 𝜋1(𝐾) and deduce that 𝐾 is not homotopy equivalent to the torus.

2.13 Manifold with a point removed ⋆

Let 𝑀 be a manifold of dimension ≥ 3 and let 𝑃 ⊆ 𝑀 be a finite subset of 𝑀. Prove that the inclusion
of 𝑀 −𝑃 into 𝑀 is an isomorphism on 𝜋1.

2.14 Oriented surfaces

Let 𝑆𝑔 be the closed oriented surface of genus 𝑔. Let 𝑋 = {𝑥1, … , 𝑥𝑘} and 𝑌 = {𝑦1, … , 𝑦𝑙} be disjoint sets
of pairwise distinct points of 𝑆𝑔.

1. Compute the fundamental group of the complement 𝑆𝑔 −𝑋.
2. Compute the fundamental group of the quotient 𝑆𝑔/𝑌.
3. Compute the fundamental group of the quotient of the complement (𝑆𝑔 −𝑋)/𝑌.
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2.15 Complex projective space ⋆

1. Prove that ℂℙ𝑛+1 is obtained from ℂℙ𝑛 by gluing a cell of dimension 2𝑛 + 2.
2. Compute the fundamental group of ℂℙ𝑛 for 𝑛 ≥ 1.

2.16 Linear groups of size 2 ⋆

1. Prove that 𝑆𝑈2(ℂ) → ℂ2, (𝑎 𝑏
𝑐 𝑑) ↦ (𝑎, 𝑐) induces a homeomorphism 𝑆𝑈2(ℂ) → 𝕊3.

2. Compute the fundamental groups of 𝑆𝑈2(ℂ), 𝑈2(ℂ) and 𝐺𝐿2(ℂ).
3. Compute the fundamental groups of 𝑆𝑂2(ℝ), 𝐺𝐿+

2 (ℝ) and 𝐺𝐿−
2 (ℝ), where 𝐺𝐿±

2 (ℝ) = {𝑀 ∈
𝐺𝐿2(ℝ) ∣ ±det(𝑀) > 0}.

2.17 Free homotopies

1. Let 𝛾 ∈ Ω𝑥𝑋 be a loop in 𝑋. Prove that 𝛾 is homotopic with fixed extremities to a constant loop if
and only if it is homotopic (without necessarily fixing extremities) to a constant loop.

2. Recall that 𝜋1(𝕊1) = ⟨𝑎, 𝑏⟩. Prove that 𝑎𝑏 and 𝑏𝑎 are homotopic without fixing extremities, but
that they are not homotopic with fixed extremities.

2.18 On the free product of groups ⋆

Let 𝐺, 𝐻 be two nontrivial groups.
1. Show that the center 𝑍(𝐺 ∗ 𝐻) is trivial.
2. Suppose that 𝑥 ∈ 𝐺 ∗ 𝐻 has finite order. Show that 𝑥 is conjugate to an element of 𝐺 or 𝐻.

2.19 Infinite dihedral group

Let 𝐺 = ℤ/2ℤ be the cyclic group of order 2. The group 𝐺 ∗ 𝐺 is called the infinite dihedral group.
Consider the map 𝐺 ∗ 𝐺 → 𝐺 given by the identity of 𝐺 on each factor. Prove that the kernel of this

map is isomorphic to ℤ.

3 Homology

3.1 Homotopy of pairs ⋆

Let (𝑋, 𝐴) and (𝑌, 𝐵) be pairs of spaces. A map of pairs 𝑓 ∶ (𝑋, 𝐴) → (𝑌, 𝐵) is a map 𝑓 ∶ 𝑋 → 𝑌 such
that 𝑓 (𝐴) ⊆ 𝐵. Two maps of pairs 𝑓 , 𝑔 ∶ (𝑋, 𝐴) → (𝑌, 𝐵) are pair-homotopic if there exists a map
𝐻 ∶ 𝑋 × [0, 1] → 𝑌 such that 𝐻(𝑥, 0) = 𝑓 (𝑥), 𝐻(𝑥, 1) = 𝑔(𝑥), and 𝐻(𝑎, 𝑡) ∈ 𝐵 for all 𝑥 ∈ 𝑋, 𝑎 ∈ 𝐴 and
𝑡 ∈ [0, 1].

1. Give an example two maps of pairs 𝑓 , 𝑔 ∶ (𝑋, 𝐴) → (𝑌, 𝐵) which are homotopic but not pair-
homotopic.

2. Prove that a map of pairs 𝑓 ∶ (𝑋, 𝐴) → (𝑌, 𝐵) induces a natural map 𝑓∗ ∶ 𝐻𝑖(𝑋, 𝐴) → 𝐻𝑖(𝑌, 𝐵) for
all 𝑖 ≥ 0.
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3.2 Five lemma ⋆

1. Suppose that in the following commutative diagram, the rows are exact and 𝑓1, 𝑓2, 𝑓4, 𝑓5 are iso-
morphisms. Prove that 𝑓3 is an isomorphism.

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5

𝑁1 𝑁2 𝑁3 𝑁4 𝑁5

2. Suppose that in the following commutative diagram of chain complex, the rows are exact. Prove
that if two chain maps out of {𝑓 , 𝑔, ℎ} induce an isomorphism on homology, then so does the third
one.

0 𝐶1 𝐶2 𝐶3 0

0 𝐷1 𝐷2 𝐷3 0

𝑓 𝑔 ℎ

3.3 Long exact sequence of a triplet ⋆

Suppose that 𝐴 ⊆ 𝐵 ⊆ 𝑋 are subspaces of 𝑋. Prove that there is a long exact sequence:

⋯ → 𝐻𝑛(𝐵, 𝐴) → 𝐻𝑛(𝑋, 𝐴) → 𝐻𝑛(𝑋, 𝐵) → 𝐻𝑛−1(𝐵, 𝐴) → ⋯

3.4 Reduced homology ⋆

Let 𝑋 be a nonempty space and 𝑥0 ∈ 𝑋 be a base point.
1. Prove that 𝐻∗(𝑋) = 𝐻∗(𝑋, {𝑥0}) is isomorphic to the kernel of 𝜖∗ ∶ 𝐻∗(𝑋) → 𝐻∗({𝑥0}), where

𝜖∗ ∶ 𝑋 → {𝑥0} is the unique map.
2. Let 𝑋 = 𝑈 ∪ 𝑉 where 𝑈 and 𝑉 are open. Prove that there is a long exact sequence:

⋯ → 𝐻𝑛(𝑈 ∩ 𝑉) → 𝐻𝑛(𝑈) ⊕ 𝐻𝑛(𝑉) → 𝐻𝑛(𝑋) → 𝐻𝑛−1(𝑈 ∩ 𝑉) → ⋯
⋯ → 𝐻0(𝑈 ∩ 𝑉) → 𝐻0(𝑈) ⊕ 𝐻0(𝑉) → 𝐻0(𝑋) → 0.

3. Prove that 𝐻∗(𝑋 ∨ 𝑌) = 𝐻∗(𝑋) ⊕ 𝐻∗(𝑌) if 𝑋, 𝑌 are well-pointed spaces (i.e., the pairs (𝑋, {𝑥0})
and (𝑌, {𝑦0}) are good pairs).

3.5 Cofibrations ⋆

Let (𝑋, 𝐴) be a pair of spaces. We say that the inclusion 𝐴 → 𝑋 is a cofibration if, whenever 𝑓 ∶ 𝑋 → 𝑌
and 𝐻 ∶ 𝐴 × [0, 1] → 𝑌 are maps such that 𝐻(𝑎, 0) = 𝑓 (𝑎) for all 𝑎 ∈ 𝐴, there exists 𝐻 ∶ 𝑋 × [0, 1] → 𝑌
such that 𝐻(𝑎, 𝑡) = 𝐻(𝑎, 𝑡) for all (𝑎, 𝑡) ∈ 𝐴 × [0, 1] and 𝐻(𝑥, 0) = 𝑓 (𝑥) for all 𝑥 ∈ 𝑋.

1. Prove that the inclusion (𝑋, 𝐴) → (𝑋 ∪ 𝐶𝐴, 𝐶𝐴) induces an isomorphism on relative homology.
2. Prove that if 𝐴 → 𝑋 is a cofibration and 𝐴 is contractible, then the quotient map 𝑋 → 𝑋/𝐴 is a

homotopy equivalence.
3. Prove that if 𝑋 is obtained from 𝐴 by gluing cells, then 𝐴 → 𝑋 is a cofibration.
4. Prove that if 𝐴 → 𝑋 is a cofibration, then (𝑋 ∪ 𝐶𝐴, 𝐶𝐴) is a cofibration.
5. Let 𝐴 → 𝑋 be a cofibration. Prove that the quotient map induces an isomorphism 𝐻𝑖(𝑋, 𝐴) ≅

𝐻𝑖(𝑋/𝐴, 𝐴/𝐴) = 𝐻𝑖(𝑋/𝐴).

3.6 Homology of a suspension ⋆

Let 𝑋 be a space. Compute 𝐻∗(Σ𝑋) in terms of 𝐻∗(𝑋).
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3.7 Parachute

Compute the homology of the “parachute” obtained by gluing together the three vertices of Δ2.

3.8 Projective complex space ⋆

Compute the homology of ℂℙ𝑛.

3.9 Smash product

Let (𝑋, 𝑥0) be a based space and 𝑛 ≥ 1.
1. Compute 𝐻∗(𝑋 × 𝕊𝑛) in terms of 𝐻∗(𝑋).
2. Compute the dimension of 𝐻𝑖((𝕊𝑛)𝑘) for all 𝑖, 𝑘 ≥ 0.
3. Let the smash product 𝕊𝑑 ∧ 𝑋 be the quotient (𝕊𝑑 × 𝑋)/(𝕊𝑑 ∨ 𝑋). Compute the homology of

𝕊𝑑 ∧ 𝑋 in terms of the homology of 𝑋.

3.10 Oriented surfaces

Let 𝑆𝑔 be the closed oriented surface of genus 𝑔. Let 𝑋 = {𝑥1, … , 𝑥𝑘} and 𝑌 = {𝑦1, … , 𝑦𝑙} be disjoint sets
of pairwise distinct points of 𝑆𝑔.

1. Compute the homology of the complement 𝑆𝑔 −𝑋.
2. Compute the homology of the quotient 𝑆𝑔/𝑌.
3. Compute the fundamental homology of the quotient of the complement (𝑆𝑔 −𝑋)/𝑌.

3.11 Klein bottle

Compute the homology of the Klein bottle 𝐾.

3.12 Torus vs wedge

Prove that the torus 𝕋 = 𝕊1 × 𝕊1 has the same homology as the wedge sum 𝕊1 ∨ 𝕊1 ∨ 𝕊2 but that they
are not homotopy equivalent.

3.13 Pathological spaces

1. Compute the homology of the line with two origins, then of the line with 𝑛 origins.
2. Compute the homology of the closure of {(𝑥, sin(1/𝑥)) ∣ 𝑥 > 0} ⊂ ℝ2.
3. Find a topological space 𝑋 and an increasing sequence of subsets 𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ … ⊆ 𝑋 such

that 𝑋 = ⋃𝑖 𝑋𝑖 but 𝐻∗(𝑋) ≠ lim𝐻∗(𝑋𝑖).

3.14 Degree ⋆

Let 𝑓 ∶ 𝕊𝑛 → 𝕊𝑛 be a map. Its degree deg(𝑓 ) ∈ ℤ is the integer such that for all 𝑥 ∈ 𝐻𝑛(𝕊𝑛; ℤ), we have
𝑓∗(𝑥) = deg(𝑓 ) ⋅ 𝑥.

1. Prove that this definition matches with the definition with fundamental groups for 𝑛 = 1.
2. Prove that if deg(𝑓 ) ≠ 0 then 𝑓 is surjective. Find a counterexample for the converse.
3. Prove that if 𝑓 is injective, then deg(𝑓 ) = ±1. Find a counterexample for the converse.
4. Prove that the degree of a reflection is −1 (use Mayer–Vietoris). Given 𝐴 ∈ 𝑂𝑛(ℝ), prove that

the degree of 𝑥 ↦ 𝐴𝑥 is equal to det(𝐴). Compute the degree of the antipodal map 𝑥 ↦ −𝑥.
5. Prove that Σ𝕊𝑛 is homeomorphic to 𝕊𝑛+1, then prove that the degree of 𝑓 is equal to the degree

of its suspension Σ𝑓 ∶ 𝕊𝑛+1 → 𝕊𝑛+1.
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3.15 Applications of degree ⋆

1. Prove that any map 𝑓 ∶ 𝕊𝑛 → 𝕊𝑛 without fixpoints is homotopic to the antipodal map. (Use that
for all 𝑥 ∈ 𝕊𝑛, the origin 0 ∈ ℝ𝑛+1 is not on the segment [𝑓 (𝑥), −𝑥]).

2. Prove that if 𝑛 is even, then any 𝑓 ∶ 𝕊𝑛 → 𝕊𝑛 admits a fixpoint.
3. Prove that if a group 𝐺 acts freely on 𝕊𝑛 with 𝑛 even, then #𝐺 ≤ 2.
4. Prove that 𝕊𝑛, for 𝑛 odd, admits a nonvanishing vector field.
5. Prove that any vector field on 𝕊𝑛, for 𝑛 even, vanishes at some point. (Given such a vector field

𝑋, consider the map 𝑢 ↦ 𝑋(𝑢)/‖𝑋(𝑢)‖).

3.16 Projective vector space

For 𝕂 = 𝔽2 and 𝕂 = ℚ, compute the (cellular) homology of ℝℙ𝑛.

3.17 Euler characteristic

Let 𝐶∗ be a bounded chain complex of finite type, that is, there exists 𝑁 ≥ 0 such that 𝐶𝑛 = 0 for 𝑛 > 𝑁,
and dim𝐶𝑛 < ∞ for all 𝑛. The Euler characteristic of 𝐶∗ is the integer:

𝜒(𝐶∗) ≔ ∑
𝑛≥0

(−1)𝑛 dim(𝐶𝑛).

1. Prove that 𝜒(𝐶∗) = 𝜒(𝐻∗(𝐶)).
2. Suppose that there is a long exact sequence, for some chain complexes 𝐴∗, 𝐵∗, 𝐶∗:

⋯ → 𝐴𝑛 → 𝐵𝑛 → 𝐶𝑛 → 𝐴𝑛−1 → ⋯ → 𝐴0 → 𝐵0 → 𝐶0 → 0.

Prove that 𝜒(𝐵∗) = 𝜒(𝐴∗) + 𝜒(𝐶∗).
For a finite CW complex 𝑋, we let 𝜒(𝑋) ≔ 𝜒(𝐻∗(𝑋; 𝕂)) for some field 𝕂.
3. Prove that 𝜒(𝑋) does not depend on the choice of 𝕂. (Use cellular homology.)
4. Let 𝑋, 𝑌 be finite CW complexes. Prove that 𝑋 × 𝑌 is a finite CW complex and compute its Euler

characteristic.
5. Let 𝑋 be a finite CW complex and 𝐴 ⊆ 𝑋 be a subcomplex. Prove that

𝜒(𝑋/𝐴) = 𝜒(𝑋) − 𝜒(𝐴) + 1.

6. Let 𝑋 be a finite CW complex and 𝐴, 𝐵 ⊆ 𝑋 be subcomplexes such that 𝑋 = 𝐴 ∪ 𝐵. Prove that

𝜒(𝑋) = 𝜒(𝐴) + 𝜒(𝐵) − 𝜒(𝐴 ∩ 𝐵).

3.18 Brouwer’s theorem

Prove the following assertions.
1. If 𝐾 ⊆ ℝ𝑛 is a compact convex subset with nonempty interior, then every map 𝐾 → 𝐾 admits a

fixpoint.
2. The identity 𝕊𝑛 → 𝕊𝑛 is not homotopic to a constant map.
3. If 𝑓 ∶ 𝔻𝑛 → ℝ𝑛 is such that 𝑓 (𝑥) = 𝑥 for all 𝑥 ∈ 𝕊𝑛−1, then the image of 𝑓 contains 𝔻𝑛.
4. Let 𝑓 ∶ 𝔻𝑛 → ℝ𝑛 be a continuous map. Then 𝑔 admits a fixpoint, or there exists 𝑥 ∈ 𝕊𝑛−1 and

𝜆 ≥ 1 such that 𝑔(𝑥) = 𝜆𝑥.
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3.19 Application of Brouwer’s theorem

1. Prove that any map 𝑓 ∶ 𝕊𝑛 → 𝕊𝑛 homotopic to a constant map admits a fixpoint.
2. (Perron–Frobenius) Let 𝐴 = (𝑎𝑖,𝑗) ∈ 𝐺𝐿𝑛(ℝ) be a square invertible real matrix and assume that

𝑎𝑖,𝑗 ≥ 0 for all 𝑖, 𝑗. Prove that 𝐴 admits a positive eigenvalue associated to an eigenvector with
nonnegative entries. (Use the map Δ𝑛−1 → ℝ𝑛, 𝑥 ↦ 𝐴𝑥.)

3. Let 𝑓 = (𝑓1, … , 𝑓𝑛) ∶ [0, 1]𝑛 → ℝ𝑛 be a continuous map. Suppose that for all (𝑡1, … , 𝑡𝑛) ∈ [0, 1]𝑛,

𝑓𝑖(𝑡1, … , 𝑡𝑖−1, 1, 𝑡𝑖+1, … , 𝑡𝑛) ≥ 0, and 𝑓𝑖(𝑡1, … , 𝑡𝑖−1, 0, 𝑡𝑖+1, … , 𝑡𝑛) ≤ 0.

Prove that there exists (𝑡1, … , 𝑡𝑛) ∈ [0, 1]𝑛 such that 𝑓 (𝑡1, … , 𝑡𝑛) = 0.
Hint: given 𝑥 ∈ ℝ, let 𝑟(𝑥) = min(1,max(0, 𝑎)) and consider the map:

𝐹(𝑡1, … , 𝑡𝑛) ≔ (𝑟(𝑓1(𝑥1, … , 𝑥𝑛) + 𝑥1), … , 𝑟(𝑓𝑛(𝑥1, … , 𝑥𝑛) + 𝑥𝑛)).
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