Publications [8]
We study ordered configuration spaces of compact manifolds with boundary. We show that for a large class of such manifolds, the real homotopy type of the configuration spaces only depends on the real homotopy type of the pair consisting of the manifold and its
We develop a curved Koszul duality theory for algebras presented by quadratic-linear-constant relations over unital versions of binary quadratic operads. As an application, we study Poisson $n$-algebras given by polynomial functions on a standard shifted symplectic space. We compute explicit resolutions of these algebras
* Provides an in-depth discussion of the connection between operads and configuration spaces * Describes a unified and accessible approach to the use of graph complexes * Based on 4 lectures held in the framework of the Peccot Lecture and Prize by the Collège
In this paper we develop the combinatorics of leveled trees in order to construct explicit resolutions of (co)operads and (co)operadic (co)bimodules. We construct explicit cofibrant resolutions of operads and operadic bimodules in spectra analogous to the ordinary Boardman--Vogt resolutions and we express them as
We study bicolored configurations of points in the Euclidean $n$-space that are constrained to remain either inside or outside a fixed Euclidean $m$-subspace, with $n - m \ge 2$. We define a higher-codimensional variant of the Swiss-Cheese operad, called the complementarily constrained disks operad
We prove the validity over ℝ of a commutative differential graded algebra model of configuration spaces for simply connected closed smooth manifolds, answering a conjecture of Lambrechts--Stanley. We get as a result that the real homotopy type of such configuration spaces only depends on
We build a model in groupoids for the Swiss-Cheese operad, based on parenthesized permutations and braids, and we relate algebras over this model to the classical description of algebras over the homology of the Swiss-Cheese operad. We extend our model to a rational model
Nous donnons une introduction au domaine des opérades, des objets qui encodent les structures algébriques. Après les avoir définies, nous présentons plusieurs domaines d’application des opérades : espaces de lacets itérés, formalité, algèbres homotopiques, longs nœuds et groupe de Grothendieck--Teichmüller. --- Introductory work on