L’homologie de factorisation est une théorie homologique pour les variétés structurées (orientées, parallélisées…) qui trouve ses origines dans les théories topologique et conformes des champs (Beilinson–Drinfeld, Salvatore, Lurie, Ayala–Francis, Costello–Gwilliam…). Après l’avoir définie et donné une idée de ses propriétés, j’expliquerai comment on peut la calculer sur ℝ grâce au modèle de Lambrechts–Stanley des espaces de configuration et/ou grâce à des complexes de graphes dans le cas des variétés fermées parallélisées, des variétés fermées orientées, et des variétés à bord parallélisées.
[En partie en collaboration avec R. Campos, J. Ducoulombier, P. Lambrechts, T. Willwacher]