Talks

Academic year 2022−2023

Academic year 2021−2022

Barcelona Conference on Higher Structures @ Universitat de Barcelona, Centre de Recerca Matemàtica

On . Title: Formality and non-formality of Swiss-Cheese operads and variants.

Configuration spaces consist in ordered collections of points in a given ambient manifold. Kontsevich and Tamarkin proved that the configuration spaces of Euclidean n-spaces are rationally formal, i.e., that their rational homotopy type is completely encoded by their cohomology. Their proofs use ideas from the theory o

Third meeting of the ANR project AlMaRe @ Institut de Mathématiques de Jussieu--Paris Rive Gauche (IMJ-PRG) 📶

On . Title: Configuration spaces of surfaces.

Framed configuration spaces of a surface form a right module over the framed little disks operad. This rich algebraic structure has important consequences, for example for the computations of manifold calculus or factorization homology. Determining the homotopy type of this operadic right module remains however a diffi

Academic year 2020−2021

Academic year 2019−2020

Academic year 2018−2019

Séminaire de Topologie @ Institut de Mathématiques de Jussieu-Paris Rive Gauche

On . Title: Homologie de factorisation et espaces de configuration.

L'homologie de factorisation est une théorie homologique pour les variétés structurées (orientées, parallélisées...) qui trouve ses origines dans les théories topologique et conformes des champs (Beilinson--Drinfeld, Salvatore, Lurie, Ayala--Francis, Costello--Gwilliam...). Après l'avoir définie et donné une idée de se

Academic year 2017−2018

Derived Geometry and Higher Categorical Structures in Geometry and Physics @ Fields Institute (Toronto)

On . Title: Curved Koszul duality and factorization homology.

Koszul duality is a powerful tool that can be used to produce resolutions of algebras in many contexts. In this talk, I explain how to use curved Koszul duality for algebras over unital operads to compute the factorization homology of a closed manifold with values in the algebra of polynomial functions on a standard sh

Graph Complexes, Configuration Spaces and Manifold Calculus @ University of British Columbia (Vancouver)

On . Title: Configuration Spaces of Manifolds with Boundary.

We study the real homotopy type of configuration spaces of smooth compact manifolds with boundary. We built combinatorial model based on graph complexes for these configuration spaces. We have three different approaches: 1. the Swiss-Cheese operad naturally acts on colored configurations in the manifold, and we build m

Séminaire de physique mathématique et de topologie algébrique @ Université d'Angers

On . Title: Espaces de configuration de variétés compactes.

L'objet de cet exposé est le type d'homotopie réel des espaces de configuration de variétés compactes simplement connexes, avec ou sans bord. Sous certaines conditions, nous donnons un modèle réel explicite de ces espaces de configuration et qui ne dépend que du type d'homotopie réel de la variété donnée. De plus, nous

Academic year 2016−2017

Conference for Young researchers in homotopy theory and categorical structures @ Max Planck Institute for Mathematics (MPIM Bonn)

On . Title: The Lambrechts–Stanley Model of Configuration Spaces.

We prove the validity over ℝ of a CDGA model of configuration spaces for simply connected manifolds of dimension at least 4, answering a conjecture of Lambrechts--Stanley. We get as a result that the real homotopy type of such configuration spaces only depends on a Poincaré duality model of the manifold. We moreover pr

Colloque 2016 du GDR Topologie Algébrique et Applications @ Université de Picardie Jules Vernes (Amiens)

On . Title: The Lambrechts–Stanley Model of Configuration Spaces.

We prove the validity over ℝ of a CDGA model of configuration spaces for simply connected manifolds of dimension at least 4, answering a conjecture of Lambrechts--Stanley. We get as a result that the real homotopy type of such configuration spaces only depends on a Poincaré duality model of the manifold. We moreover pr

Academic year 2015−2016